SECURITY INFORMATION CONFIDENTIAL Copy 5 RM E51L12 UN 3 1953 REVISED VERSION # RESEARCH MEMORANDUM ALTITUDE WIND TUNNEL INVESTIGATION OF XJ34-WE-32 ENGINE PERFORMANCE WITHOUT ELECTRONIC CONTROL By Harry E. Bloomer, William J. Walker and George L. Pantages Lewis Flight Propulsion Laboratory Cleveland, Ohio FOR REFERENCE NOT TO BE TAKEN FROM THIS ROOM CLASSIFIED DOCUMENT This material contains information affecting the National Defense of the United States within the meaning of the explorage laws, Title 18, U.S.C., Secs. 783 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON May 29, 1953 IN A C A LIBRARY LANGLEY AERONALTICAL LABORATORS LANGLEY AERONALTICAL LABORATORS UNCLASSIFIED CLASSIFICATION CITATION NACA RM E51L12 HELLEGIE To the state of ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## RESEARCH MEMORANDUM ALTITUDE WIND TUNNEL INVESTIGATION OF XJ34-WE-32 ENGINE PERFORMANCE WITHOUT ELECTRONIC CONTROL By Harry E. Bloomer, William J. Walker and George L. Pantages #### SUMMARY An investigation was conducted in the NACA Lewis altitude wind tunnel to evaluate the performance characteristics of an XJ34-WE-32 turbojet engine which was equipped with an afterburner, a variable-area exhaust nozzle, and an integrated electronic control. The data were obtained with the afterburner and electronic control inoperative. Performance data were obtained at altitudes from 5000 to 55,000 feet and flight Mach numbers from 0.28 to 1.06 for a complete range of operable engine speeds at each of four fixed positions of the variable-area exhaust nozzle. The variation of generalized values of jet thrust, net thrust, and air flow with corrected engine speed were adequately defined by a single curve for altitudes up to 40,000 feet at a flight Mach number of 0.528. Generalized values of fuel flow and performance variables dependent upon fuel flow varied with changes in altitude at a given flight Mach number. Engine pumping characteristics, from which engine performance can be predicted for corrected engine speeds of 11,500 and 12,500 rpm over a wide range of Reynolds number index are presented, and two methods of thrust modulation from 70 to 100 percent of maximum thrust are compared. The results indicate that the specific fuel consumption was essentially the same for thrust modulation obtained by varying engine speed at constant exhaust-nozzle area and by varying exhaust-nozzle area at constant engine speed. #### INTRODUCTION As a part of the comprehensive investigation of the XJ34-WE-32 engine conducted in the NACA Lewis altitude wind tunnel, the over-all performance was determined over a range of altitudes and flight Mach numbers. Other phases of the investigation are reported in reference 1. The performance data presented herein were obtained at four fixed settings of the variable-area exhaust nozzle and with the afterburner and electronic control inoperative. Data were obtained at altitudes from 5000 to 55,000 feet and flight Mach numbers from 0.28 to 1.06. The results are given in tables and also in graphical form to show the trends of engine performance associated with changes of altitude, flight Mach number, and exhaust-nozzle area. #### APPARATUS AND PROCEDURE #### Engine The XJ34-WE-32 engine, with afterburner inoperative, has a static sea-level thrust rating of 3370 pounds at an engine speed of 12,500 rpm and an average turbine-inlet temperature of 1525° F. At this operating condition, the air flow is approximately 58 pounds per second. The engine has an 11-stage axial-flow compressor, a double annular combustor, a two-stage turbine, and an integral afterburner. The over-all length of the engine is 185 inches and the maximum diameter is 27 inches at the afterburner. The total weight of the engine and accessories is 1558 pounds. The engine is equipped with an electronic control which provides thrust regulation throughout the unaugumented and afterburning regions by means of a single thrust-selector lever. A mixer-vane assembly was installed at the compressor discharge because of a temperature-inversion problem at the turbine. #### Installation The engine and afterburner were mounted on a wing section that spanned the 20-foot-diameter test section of the altitude wind tunnel (fig. 1). Dry refrigerated air was supplied to the engine from the tunnel make-up air system through a duct connected to the engine inlet. Throttle valves were installed in the duct to permit regulation of the pressure at the inlet of the engine. Engine thrust and drag measurements by the tunnel balance scales were made possible by the frictionless slip joint located in the duct upstream of the engine. Instrumentation for measuring pressures and temperatures was installed at various stations in the engine (fig. 2). #### Procedure Pertinent engine-performance data were obtained over the range of flight conditions listed in the following table: At most of the flight conditions listed, data were obtained over a wide range of engine speeds at the full open, full closed, and at two intermediate exhaust-nozzle areas corresponding to projected nozzle areas of 153, 164, 192, and 274 square inches. Data were not obtained, however, when the combination of nozzle area and engine operating conditions was such that excessive turbine temperatures resulted. In order to set up these various flight conditions, the air flow through the make-up air duct was throttled from approximately sea-level pressure to the total pressure that corresponded to the desired flight Mach number at a given altitude. The tunnel, into which the engine exhausted, was set at the desired altitude ambient pressure. In the calculation of flight Mach number, complete ram-pressure recovery was assumed. The temperature of the inlet air approximated NACA standard values except that the minimum temperature obtained was 440° R. The fuel used was MIL-F-5572, grade 80 (ANF-48b), clear gasoline, having a lower heating value of 19,000 Btu per pound and a hydrogen-carbon ratio of 0.186. The methods of calculation and the symbols used herein are given in the appendix. #### RESULTS AND DISCUSSION Values of the variables which are descriptive of engine performance are tabulated in table I along with the engine-operating and simulated-flight conditions. During the investigation, the engine was sometimes operated at compressor pressure ratios that caused the compressor to operate in a mild-stall condition. Because of this phenomenon, the engine performance variables are affected and apparent discontinuities appear in the data. In general, this stall operation occurred in the engine-speedy range from 10,000 to 12,500 rpm at altitudes from 25,000 to 55,000 feet and, of course, was most prevalent with the smaller exhaust-nozzle areas. The specific conditions at which stall influenced the performance are given in the following table: | Altitude
(ft) | Flight Mach
number | Engine-speed
renge
(rpm) | Exhaust-nozzle
projected area
(sq in.) | |------------------|-----------------------|--------------------------------|--| | 25,000 | 0.28 | 10,000 - 11,000 | 153 | | 25,000 | .53 | 11,500 - 11,750 | 153 | | 40,000 | .53 | 10,000 - 12,500 | 153 | | 40,000 | .79 | 10,500 - 11,500 | 153 | | 40,000 | 1.06 | 11,400 - 11,500 | 153 | | 47,000 | .53 | Below 11,000 | 16 4 | | 55,000 | .53 | All points taken | 192 | | 55,000 | .79 | Below 11,500 | 192 | The use of an electronic control which schedules open exhaust nozzle until rated engine speed is attained would permit the engine to skirt all stall regions encountered during the investigation. #### Generalized Performance Engine-performance data have been generalized to NACA standard sea-level conditions by use of the conventional factors $\delta_{\rm T}$ and $\theta_{\rm T},$ which are defined in the appendix. Generalized performance variables for all flight conditions investigated are given in table I. The effectiveness of the correction factors in correlating data obtained at various flight conditions to a single curve is shown in figures 3 to 9. Changes in component efficiencies such as those associated with variations in Reynolds number which accompany changes in altitude or flight speed will, of course, lessen the possibility of defining generalized performance by a single curve. Effect of altitude. - The corrected performance data, obtained at a flight Mach number of 0.528 and at altitudes from 10,000 to 55,000 feet, are presented in figures 3 to 8 to show the effect of altitude on the corrected engine performance variables when the variablearea exhaust nozzle is in each of four fixed positions. The corrected values of jet thrust (fig. 3) and net thrust (fig. 4) reduce to a single curve for altitudes from 10,000 to 40,000 feet for all exhaust-nozzle sizes. A further increase in altitude resulted in higher values of the corrected thrusts. This increase in thrust is traceable to the reduction in compressor efficiency with altitude which requires a higher turbine-inlet temperature to sustain a given corrected engine speed. Inasmuch as compressor pressure ratio is a function of the turbine-inlet temperature, the thrust is increased notwithstanding the slight decrease in air flow shown in figure 5. Corrected values of air flow reduced to a single curve for all altitudes up to 40,000 feet for the variablearea exhaust nozzle in the wide-open position. For the two intermediate positions of the nozzle, the air flow reduced to a single curve only for altitudes up to 25,000 feet. Any further increase in altitude reduced the air flow throughout the engine-speed range. For the smallest exhaust-nozzle area, however, the generalized air flow reduced to a single curve, within the range of data scatter, for altitudes from 10,000 to 40,000 feet, the highest altitude investigated. The aforementioned reductions in air
flow with increasing altitude are probably due to changes in the internal-flow conditions caused by lower Reynolds numbers at the higher altitudes. Because of large changes in combustion efficiency with altitude, the parameters that are dependent upon fuel flow did not reduce to a single curve for any engine speed or altitude at which data were taken. Corrected fuel flow (fig. 6) and corrected specific fuel consumption (fig. 7) increased with altitude throughout the range of corrected engine speeds. These trends are the result of lower engine combustion efficiencies caused by low pressures in the combustor at higher altitudes. Corrected exhaust-gas total temperature (fig. 8) also increased with altitude throughout the corrected engine-speed range. This trend is due to reductions in compressor and turbine efficiencies with altitude that require higher temperatures to maintain a given corrected engine speed. Effect of flight Mach number. - With the exception of corrected air flow, a single-curve correlation of generalized performance variables obtained over a range of flight Mach numbers is precluded by variations in engine pressure ratio, combustion efficiency, and Reynolds number effects on component efficiencies. The effect of flight Mach number on the variation of corrected air flow with corrected engine speed is presented in figure 9 for an altitude of 25,000 feet. Data showing the effect of flight Mach number on other performance variables are included in table I. Corrected air flow reduced to a single curve at the higher engine speeds and diverged slightly at the lower engine speeds for the three largest exhaust-nozzle areas. The greater separation of the corrected air-flow curves for the small nozzle area probably is the result of localized regions of stall within the compressor that result from the proximity of the engine operating lines to the compressor stall line. This trend of reduced air flow during stall is evidenced by the two data points obtained in the stall region. From the data of figures 3 to 8, performance within the range of the investigation can be determined for operation at a flight Mach number of 0.528. In order to permit calculation of engine performance at other flight Mach numbers, engine performance is presented in terms of pumping characteristics, which are discussed in the following section. ## Pumping Characteristics Engine performance is presented in figures 10 to 12 in terms of engine total-pressure ratio, engine total-temperature ratio, corrected air flow, corrected fuel flow, and Reynolds number index for corrected engine speeds of 12,500 and 11,500 rpm. (The relation between Reynolds number index, altitude, and flight Mach number is shown in fig. 13.) From the data presented, complete engine performance may be computed at any flight condition within the range of Reynolds number indices covered by these data provided that losses in the tail pipe and the exhaust nozzle are known. The data presented in figure 10 indicate that the critical Reynolds number index was about 0.60 at the temperature ratios and the corrected engine speeds investigated. As the Reynolds number index was reduced below the critical, the engine pressure ratio decreased rapidly. This reduction in engine pressure ratio is associated with the reduction in component efficiencies at low Reynolds numbers. This same trend is evident for corrected air flow (fig. 11). The reduction in air flow, however, is probably due to a reduction in effective-flow area caused by an increasing boundary-layer thickness or flow separation in the compressor passages. Air flow for different temperature ratios reduced to a single curve at a constant corrected engine speed of 12,500 rpm because of choking in the first stage of the compressor. However, the air flows for different temperature ratios at a constant corrected engine speed of 11,500 rpm, where the compressor is not choked, do not reduce to a single curve. As a matter of convenience, the corrected fuel flow is presented as a function of Reynolds number index in figure 12. Although Reynolds number index is not intended to be a basis for generalizing combustion data, the correlation obtained is adequate for presentation of the fuelflow results. The rapid increase in fuel flow at the low Reynolds number indices is obviously a result of low combustion efficiency which is associated with high altitude flight conditions. From these curves, air flow, fuel flow, and total pressure can be determined at the turbine outlet for any flight condition within the range of Reynolds number indices covered. With these values and an average over-all tail-pipe pressure loss, of 0.065 of the turbine-outlet total pressure as determined in this investigation, jet thrust can be calculated by using equation (7) in the appendix. The over-all engine performance for other tail-pipe or inlet-duct configurations may also be readily obtained if the pressure-loss characteristics of these configurations are known. This method may be extended to the lower engine-speed range by construction of similar plots from the data in table I. Effect of Method of Engine Operation on Performance The engine performance variables in ungeneralized form are presented in figures 14 to 17. These data have been adjusted to compensate for experimental deviation from standard NACA inlet temperature and pressure conditions by the use of the factors $\delta_{\rm adj}$ and $\theta_{\rm adj}$ defined in the appendix. The variation of net thrust and specific fuel consumption with turbine-outlet temperature for altitudes of 10,000 and 25,000 feet at a Mach number of 0.528, shown in figure 14, demonstrates conditions of engine speed and turbine-outlet temperature for maximum thrust and minimum specific fuel consumption. The value and location of the maximum engine speed for each operating line is indicated. Maximum thrust occurs at maximum engine speed and limiting turbine-outlet temperature for any given nozzle size. At this maximum thrust condition, the specific fuel consumption was slightly higher than the minimum value obtainable. It should be noted that with the smallest exhaust-nozzle size, rated engine speed cannot be reached at either altitude because of turbine temperature limitations. Rated engine speed is reached before the turbine temperature limit when the three larger nozzle sizes are used. Also it should be noted that, whereas the slope of the thrust curve is always positive, thus indicating larger thrusts for higher temperatures, the specific fuel consumption curve reaches a minimum value before the limiting temperature is reached. Therefore, there exists for each flight condition a different engine speed and exhaust-nozzle area at which minimum specific fuel consumption (at reduced thrust) may be obtained. These points are discussed in more detail in the following paragraphs. The variation of net thrust with altitude at a constant flight Mach number of 0.528 is shown in figure 15(a). The data show performance results at rated engine speed with thrust variations obtained by changes in exhaust-nozzle area. The circular symbols represent maximum thrust points at rated engine speed and maximum turbine temperature limit. These data were taken from cross-plots of data similar to that shown in figure 14. The other symbols represent points at 90, 80, and 70 percent of the maximum thrusts; these thrusts and the accompanying specific fuel consumptions, presented in figure 15(b), were interpolated at rated speed and larger exhaust-nozzle areas. The specific fuel consumption did not change significantly with the thrust level. Another way of modulating thrust is by keeping a constant exhaust-nozzle size and changing engine speed. Figure 15(c) shows the engine speeds required to produce 90, 80, and 70 percent of maximum thrust with a fixed exhaust-nozzle area of 164 square inches. Figure 15(d) shows the variation with altitude of specific fuel consumption for 247(constant exhaust-nozzle area operation at these engine speeds. Again, as thrust is reduced to as little as 70 percent of maximum thrust by lowering engine speed, the specific fuel consumption remains practically constant for the given altitudes. Comparing this mode of operation with the method of constant engine speed and varying nozzle area fail to disclose any significant difference in specific fuel consumption within this thrust range. The effect of flight Mach number at 25,000 feet, with the same variables presented in figure 15, is presented in figure 16. Again, for the various flight Mach numbers shown, there is little difference in performance for the two methods of thrust modulation at any flight Mach number. #### CONCLUDING REMARKS Complete engine-performance data were obtained for operation over a wide range of engine speeds and with four fixed exhaust-nozzle areas at simulated altitudes as high as 55,000 feet and flight Mach numbers as high as 1.06. Results obtained at a flight Mach number of 0.528 for altitudes from 10,000 to 55,000 feet were generalized by the use of the correction factors $\,\delta_{m}\,$ and $\,\theta_{m}.$ Jet thrust, net thrust, and air flow in general reduced to a single curve as a function of corrected engine speed for a given flight Mach number and altitudes up to about 40,000 feet; however, parameters involving fuel flow failed to reduce to a single curve. For operation over a range of flight Mach numbers from 0.284 to 1.055 at a constant altitude of 25,000 feet, only corrected air-flow values tended to reduce to a single curve. Engine performance at speeds of 11,500 and 12,500 rpm may readily be calculated, however, for a range of either flight Mach numbers or altitudes by the use of engine pumping curves presented herein. All the data obtained are also given in tabular form thereby permitting the construction of pumping-characteristic curves for a wide range of engine speeds. Two methods of thrust modulation, (a) varying engine
speed at constant exhaust-nozzle area and (b) varying exhaust-nozzle area at constant (rated) engine speed, were compared. For thrust loads from maximum to 70 percent of maximum at a given flight condition, the specific fuel consumption was essentially independent of the mode of operation over the entire range of flight conditions simulated. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio ### APPENDIX - CALCULATIONS #### Symbols The following symbols are used in the calculations and on the figures: - A cross-sectional area, sq ft - B thrust-scale reading, 1b - C_V velocity coefficient, ratio of scale jet thrust to rake jet thrust - D external drag of installation, lb - Dr drag of exhaust-nozzle survey rake, 1b - F; jet thrust, 1b - Fn net thrust, 1b - g acceleration due to gravity, 32.2 ft/sec2 - M Mach number - N engine speed, rpm - P total pressure, 1b/sq ft absolute - p static pressure, lb/sq ft absolute - R gas constant, 53.4 ft-lb/(lb)(OR) - T total temperature, OR - t static temperature, OR - V velocity, ft/sec - Wa air flow, lb/sec - Wf fuel flow, lb/hr - Wg gas flow, lb/sec - γ ratio of specific heat for gases NACA RM E51112 | $\delta_{\mathbf{T}}$ | ratio of compressor-inlet absolute total pressure to absolute static pressure of NACA standard atmosphere at sea level | |-----------------------|--| | ^δ adj | ratio of compressor-inlet absolute total pressure to total pressure of NACA standard atmosphere at altitude flight condition | - θ_{T} ratio of compressor-inlet absolute total temperature to absolute static temperature of NACA standard atmosphere at sea level - $\theta_{ m adj}$ ratio of compressor-inlet absolute total temperature to total temperature of NACA standard atmosphere at altitude flight condition - ϕ ratio of kinematic viscosity of air at compressor inlet to viscosity of NACA standard atmosphere at sea level ## Subscripts: - a air - f fuel - i indicated - s scale - O free-stream conditions - inlet duct at frictionless slip joint - 2 compressor-inlet annulus - 5 turbine outlet - 7 exhaust-nozzle inlet - 8 exhaust nozzle, $1\frac{3}{8}$ -in. forward of fixed portion of exhaust nozzle ## Methods of Calculation Flight Mach number. - The flight Mach number, assuming complete ram-pressure recovery, was calculated from the expression Airspeed. - The following equation was used to calculate the equivalent airspeed $$V_{O} = M_{O} \sqrt{\gamma_{SRT_{1}} \left(\frac{p_{O}}{P_{1}}\right)^{\frac{\gamma_{1}-1}{\gamma_{1}}}}$$ (2) Temperature. - Static temperatures were determined from indicated temperatures with the following relation $$t = \frac{T_{\frac{1}{2}}}{1 + 0.85 \left(\frac{P}{p}\right) - 1}$$ (3) where 0.85 is the impact recovery factor for the type of thermocouple used. Total temperature was calculated from the adiabatic relation between temperatures and pressures. Air flow. - Air flow was determined from pressure and temperature measurements in the engine-inlet air duct by use of the equation $$W_{a,1} = p_1 A_1 \sqrt{\frac{2\gamma_1 g}{(\gamma_1 - 1) Rt_1} \left(\frac{p_1}{p_1}\right)^{\frac{\gamma_1 - 1}{\gamma_1}} - 1}$$ (4) Gas flow. - The total weight flow through the engine was calculated as follows: $$W_{g,5} = W_{a,1} + \frac{W_{f}}{3600}$$ (5) Jet thrust. - The jet thrust of the installation was determined from the balance-scale measurements by using the following equation: $$F_{j,s} = B + D + D_r + \frac{W_{a,1} V_1}{g} + A_1 (p_1 - p_0)$$ (6) The last two terms of this expression represent the momentum and pressure forces on the installation at the slip joint in the inlet-air duct. The external drag of the installation was determined with the engine inoperative. Drag of the water-cooled exhaust-nozzle survey rake was measured by an air-balance piston mechanism. Scale net thrust was obtained by subtracting the equivalent freestream momentum of the inlet air from the scale jet thrust: $$F_{n,s} = F_{j,s} - \frac{W_{a,1} V_0}{g}$$ Jet thrust. - If it is assumed that there is complete expansion and that there are no losses in the exhaust system, $$\mathbf{F_{j}} = \frac{\mathbf{W_{a}} \left(1 + \frac{\mathbf{W_{f}}}{\mathbf{W_{a}}}\right)}{\mathbf{g}} \sqrt{\frac{2\gamma_{5}\mathbf{g}\mathbf{RT_{5}}}{(\gamma_{5}-1)}} \left[1 - \left(\frac{\mathbf{P_{0}}}{\mathbf{P_{5}}}\right)^{\frac{\gamma_{5}-1}{\gamma_{5}}}\right]$$ (7) ## REFERENCES 1. Sobolewski, A. E., and Farley, J. M.: Steady-State Engine Windmilling and Engine Speed Decay Characteristics of an Axial-Flow Turbojet Engine. NACA RM E51106, 1951. NACA RM E51L12 470 NACA TABLE I. - PERFORMANCE AT VARIOUS ENGINE-OPERATING AND | | _~~ | ~ | | | | | | | | | | | | | | | | | |----------------|--------------|-------------------------|---------------|--------------------|-------------------------|------------------|-----------------|----------------|--------------|----------------|--------------|-----------------|--------------|----------------|----------------|----------------|----------------|----------------| | Run | Altı- | Ram | Plight | Tunnel | Reynolds | Engine | Equiva- | Engine- | | thrust | (1b) | Engine | | thrust, | (15) | ALE | | lb/seo) | | | tude
(ft) | pres- | Mach | static
pressure | number | speed | lent
ambient | inlet
indi- | tude | Cor-
rected | Justed | total-
pres- | Alti- | rected | Ad- | tude | Cor-
rected | justed | | | (10) | matto. | MO | P0 | | (rym) | air | oated | Pj | P. | Fi | sure | , Fn | ₽ _n | P _n | Wa | Way/FT | We Weds | | | } | Pl | ĺ | / 1b \ | 5 <u>T</u> | , | temper- | temper- | 1 1 | 87 | Sad j | ratio | " | 8 <u>~</u> | Lbs | | 87 | Chad | | | | p ₀ | | ad It aba. | ø√07 | | t | Ti | 1 | _ | | P ₅ | l | | | | - | | | | | | | | | | (°R) | (°R) | | | | 1 2 | | | 1 | 1 | | • | | | | | | | | (| a) Exhau | st-nozzl | e area | , 153 s | quare 1 | nches. | | | | | | | | 1 | 5,000 | 1.062 | 0.280 | 1754 | 0.998 | 11,689 | 462 | 468 | 3281 | 3747 | 5294 | 2.166 | 2794 | 3191 | 2805 | 53.04 | 57.60 | 51.15 | | 2 | ' | 1.076 | .312 | 1757
1760 | 1.008 | 11,525
10,537 | 458
459 | 466
466 | 3273
2275 | 3725
2591 | 3319
2277 | 2.134 | 2735
1863 | 3112
2122 | 2775
1865 | 52.82
45.43 | 57.05
49.02 | 51.20
45.52 | | 4 | | 1.056 | .278 | 1754 | 1.005 | 9,220 | 460 | 466 | 1355 | 1546 | 1356 | 1.441 | 1041 | 1191 | 1045 | 34.39 | 37.31 | 33.07 | | 5 | | 1.056 | .278 | 1754
1752 | 1.008 | 7,903
6,256 | 459
461 | 466
467 | 859 | 960
508 | 842 | 1.245 | 585
938 | 669
273 | 587
239 | 28.03 | 30.38 | 26.93
21.66 | | 6 7 | 10.000 | 1.055 | 0.525 | 1450 | 0.8467 | 11,525 | 482 | 508 | 2640 | 3434 | 2851 | 1.957 | 258
2045 | 2472 | 239
2053 | 22.69
45.24 | 24.66
54.15 | 21.56
45.38 | | 8 | | 1.206 | .622 | 1454 | .8517
.8726 | 10,537 | 481 | 505
499 | 1907
2028 | 2504 | 1909
2030 | 1.620 | 1255 | 1516
1628 | 1256
1353 | 37.36 | 45.77 | 37.32
38.41 | | 9
10 | | 1.213
1.208 | .527
.524 | 1454
1457 | .8598 | 9,220 | 479 | 504 | 1208 | 1457 | 1207 | 1.291 | 674 | 813 | 674 | 30.58 | 36.39 | 50.44 | | 11 | | 11.212 | .528 | 1455 | .8584 | 7,903 | 480 | 506 | 756
757 | 885
917 | 757 | 1.102 | 295
322 | 355
390 | 295
323 | 25.00
25.04 | 39.73
29.75 | 24.85 | | 12
13 | | 1.208 | .524
.525 | 1450
1454 | .8696
.8467 | 7,903
6,256 | 473 | 499
510 | 386 | 486 | 386 | .9715 | 59 | 71 | 59 | 18.56 | 22.22 | 18.60 | | 14 | | 1.212 | .531 | 1455 | .8757 | 6,255 | 474 | 489 | 400 | 480 | 2827 | .9733
1.952 | 69
2025 | 2448 | 2023 | 16.83 | 22.22
54.14 | 18.66
45.36 | | 15
16 | | 1.212 | .524 | 1450
1456 | .8505
.8511 | 11,525
11,525 | 481
482 | 506
507 | 2816 | 3407
3385 | 2809 | 1.955 | 2013 | 2425 | 2013 | 45.36 | 54.11 | 45.31 | | 17 | | 1.208 | .522 | 1454 | .8576 | 10,537 | 479 | 504 | 1925 | 2323 | 1925 | 1.574 | 1265 | 1526 | 1266 | 37.77 | 45.02
36.37 | 37.66 | | 18
19 | | 1.209 | .525 | 1452
1456 | .8576
.8628 | 9,220
7,903 | 480
480 | 504
504 | 1187
751 | 1434
877 | 1191
731 | 1.285 | 652
297 | 788
356 | 654
297 | 24.50 | 29.06 | 24.43 | | 20 | [| 1.214 | .532 | 1450 | .8569 | 6,256 | 461 | 506 | 577 | 454 | 571 | .971 | 58 | 70 | 56 | 17.93 | 21.35
45.06 | 17.97
37.59 | | 21 | | 1.208 | .519 | 1457 | .8554
.848 \$ | 9,220 | 479 | 505
508 | 1915 | 2515
1428 | 1914 | 1.590 | 1262 | 1526
798 | 1261
660 | 37.67 | 35.83 | 29.94 | | 22
25
24 | | 1.207
1.207
1.208 | .520
.521 | 1456
1456 | .8576 | 7.903 | 480 | 504 | 736 | 889 | 736 | 1.110 | 312 | 377 | 312 | 24.36 | 29.06 | 24.29 | | 24 | 0E 000 | 1.208 | .522
1.055 | 1450
784 | .6503 | 6,256 | 483 | 506
525 | 393 | 476 | 395 | .9794 | 69 | 64 | 69 | 18.52 | 22.22 | 18.59 | | 25
26 | 25,000 | 2.051 | 1.053 | 781 | | 11,854 | | 519 | | | | | | i —— | | | ===== | | | 27 | | 2.028 | 1.052 | 784 | 0.7380 | 11,854 | 428 | 521 | 3129
2909 | 4199
3895 | 3132 | 1.946 | 1762
1577 | 2365
2112 | 1764
1583 | 41.25 | 55.56
53.83 | 40.12 | | 28
29 | | 2.037 | 1.055 | 782
779 | .7402
.7515 | 11,525
10,537 | 427 | 521
524 | 2043 | 2752 | 2059 | 1.437 | 900 | 1212 | 207 | 34.34 | 46.53 | 34.61 | | 30
31 | | 2.040 | 1.059 | 784 | .7435 | 9,220 | 428 | 522 | 1191 | 1585
889 | 1192 | 1.055 | 272
-92 | 362
-122 | 272
-93 | 27.54 | 36.85
30.31 | 27.51 | | 31
32 | l . | 2.051 | 1.064 | 780
788 | .7424
.7596 | 7,903
6,256 | 430
430 | 524
521 | 669
302 | 405 | 675
501 | .6502 | -284 | -581 | -283 | 17.70 | 23.86 | 17.63 | | 33 | 1 | 1.522 | .792 | 783 | -63.27 | 11,960 | 4.50 | 482 | 2467 | 4409 | 2474 | 2.158 | 1629 | 2911
2851 | 1634
1607 | 33.49
53.25 | 57.80
57.26 | 33.59
33.38 | | 34
35 | | 1.530 |
.798 | 781
784 | .6143
.6127 | 11,854 | 429
430 | 483
483 | 2436 | 4005 | 2448
2243 | 2.054 | 1428 | 2552 | 1429 | 32.56 | 56.20 | 32.59 | | 36 | | 1.523 | 794 | 784 | -6165 | 10.537 | 429 | 482 | 1608 | 2864 | 1610 | 11.633 | 898 | 1599 | 899 | 28.33 | 48.67 | 28.55 | | 37
38 | 1 | 1.523 | .798 | 782
784 | .8203
.6188 | 9,220 | 427 | 480
482 | 981
558 | 1713
993 | 965
559 | 1.220 | 395
97 | 704
175 | 397
97 | 22.56
18.40 | 38.71
31.56 | 18.35 | | 38 | i | 1.520 | .800 | 781 | -6146 | 6,256 | 451 | 485 | 268 | 677 | 269 | .8168 | -83 | -148 | -83 | 15.86 | 23.65 | 13.94 | | 40 | l | 1.221 | .535 | 783 | .5376 | 11,689 | 428 | 451
452 | 1883 | 4074 | 1889 | 2.256 | 1410 | 3137
3040 | 1414 | 28.08 | 56.38
57.54 | 28.11 | | 42 | | 1.218 | .532 | 779
781 | .553
.5365 | 11,525
11,560 | 429
429 | 453 | 1537 | 3412 | 1545 | 1.960 | 1090 | 2420 | 1095 | 26.21 | 54.41 | 20.31 | | 43 | | 1.212 | .528 | 784 | .5299 | 10.537 | 453 | 455 | 1305
770 | 2913
1724 | 1306
778 | 1.799 | 905
455 | 2020
1019 | 906
459 | 23.90
18.76 | 50.05
59.15 | 24.02
18.85 | | 45 | i | 1.214 | .535
.524 | 719
784 | .5368
.5350 | 9,220 | 427
429 | 451
453 | 456 | 1021 | 456 | 1.171 | 207 | 463 | 206 | 15.09 | 31.52 | 15.05 | | 48 | 1 | 1.202 | .520 | 781 | .6308 | 6,256 | 430 | 453 | 272 | 613 | 273
1595 | 1.027 | 67
2355 | 181
3454 | 67
1362 | 12.46 | 26.23 | 12.52
24.92 | | 48 | | 1.060 | .297 | 781
787 | .4708
.4704 | 11,525 | 444 | 450
452 | 1507
1573 | 4045
3995 | 1569 | 2.259 | 1348 | 3424 | 1345 | 24.48 | 58.09 | 24.85 | | 49 | | 1.061 | .290 | 784 | .4739 | 10.866 | 443 | 448 | 1295 | 3297 | 1298
913 | 2.028 | 1086
745 | 2755
1901 | 1087 | 22.45 | 53.23
42.60 | 22.81
18.25 | | 50
51 | 1 | 1.059 | .287 | 783
781 | .4721
.4890 | 9,220 | 445 | 450
451 | 910
641 | 2522
1640 | 644 | 1.692 | 491 | 1266 | 493 | 16.22 | 36.73 | 16.58 | | 52 | 1 | 1.055 | .280 | 780 | 4858 | 7,903 | 446 | 453 | 393 | 1009 | 395 | 1.251 | 277 | 711 | 279 | 12.90 | 50.95 | 15.21 | | 53
54 | 40.000 | 2.013 | 1.059 | 780
394 | 0.4221 | 6,256 | 390 | 475 | 1783 | 4721 | 1774 | 2.128 | 1072 | 2659 | 1067 | 22.83 | 56.7 | 22.13 | | 55 | 1-0,000 | 2.028 | 1.052 | 393 | .4102 | 11,525 | 396 | 482 | 1688 | 4515 | 1684 | 2.057 | 998 | 2670 | 996 | 21.63 | 55.87 | 21.65 | | 56
57 | | 2.041 | 1.058 | 391
388 | .4127
.4136 | 11,525
10,537 | 394
393 | 480
482 | 1653 | 3104 | 1858 | 2.048 | 962
578 | 2570
1535 | 584 | 18.31 | 45.89 | 18.49 | | 58 | 1 | 2.043 | 1.062 | 393 | .4188 | 9,220 | 392 | 479 | 755 | 1939 | 731 | 1.149 | 245 | 648 | 244 | 15.22 | 38.75
51.55 | 15.17 | | 59
60 | l | 2.054 | 1.066 | 391
394 | .4216 | 7,903 | 390
398 | 477
450 | 438
873 | 1159
3069 | 439
882 | 28538
1.684 | 503 | 1768 | 508 | 12.43 | 48.70 | 15.10 | | 61 | | 1.515 | .791 | 388 | ,3398 | 10,537 | 399 | 448 | 868 | 3087 | 884 | 1.714 | 509 | 1810 | 506 | 14.82 | 49.34 | 14.96 | | 62 | | 1.529 | .799 | 393 | -3329 | 10,072 | 407 | 457 | 754
554 | 2597
1901 | 732
536 | 1.554 | 244 | 1422
854 | 241 | 13.53 | 45.01 | 15.75 | | 63
64 | | 1.525 | .794 | 594
394 | .5392 | 9,220 | 402 | 453 | 308 | 1084 | 304 | 1.030 | 67 | 237 | 67 | 9.86 | 32.65 | 9.918 | | 65 | | 1.520 | .798 | 392 | .3346 | 6,256 | 404 | 456 | 147 | 522 | 147 | .854
1.595 | -40
549 | -142
1558 | 348 | 7.66 | 25.46
43.49 | 7.767
1087 | | 66
67 | 1 | 1.206 | .524 | 593
393 | .2682
.2695 | 10,072
10,072 | 428
427 | 452
450 | 522
521 | 2330
2256 | 521
500 | 1.589 | 328 | 1464 | 327 | 10.44 | 43.48 | 1086 | | 66 | l | 11.203 | .524 | 394 | .2704 | 9,220 | 427 | 450 | 377 | 1680 | 375 | 1.387 | 223 | 993 | 222 | 9.34 | 38.74 | 9.585
8.174 | | 69 | ļ | 1.202 | .524 | 391
393 | .2678 | 7,903
6,256 | 429
430 | 452
453 | 150 | 1087 | 243
138 | 1.168 | 113 | 506
180 | 113 | 7.80 | 25.45 | 6.310 | | 70 | 1 | 1.191 | .512 |) 383 | .2031 | 0,200 | 100 | 1 100 | 1,100 | , OLI | 1 200 | 121450 | | | | | | | ## SIMULATED-FLIGHT CONDITIONS WITH MIXER VARES INSTALLED | | _ | | /22 4 3 | | | | | | | | | | т | |----------------------------|---------------|---------------------------|-------------|-----------------------------|------------------|------------------|------------------|--------------|----------------|------------------|------------------|------------------|----------| | Engine
total-
emper- | Alti-
tude | el flow
Cor-
rected | (lb/hr) | Turbine-
cutlet
total | Specific | fuel c | onsumption | tem | ust ga | e. (°≅) | Cor- | Ad-
justed | Ru | | ature | Wr | Wf | Mr. | pressure | Alti- | Cor- | Ad- | Liti- | Cor- | Ad-
justed | engire
speed | engine
speed | 1 | | ratio | - | STA ST | | Ps | tude | rected | justed | Ta | Te | Ta | N N | speed | 1 | | T ₅ | | "TA OT | oadi√edi | / 15 1 | Wr | We | Wf | - | # - | Padi | A 07 | 45 | 1 | | 72 | | _ | | (sq It abs. | P _n | In 4 6T | Fn Veadj | | - | -10] | (rpm) | 10 ad ; | 1 | | | | | | (a) Exhaust- | nozzle are | | | hes. | | | | | | | 3.648 | 3470 | 4168 | 3626 | 4014 | 1.242 | 1.306 | 1.293 | 1711 | 1894 | 1854.7 | 12.297 | 12,168 | Ti | | 5.621 | 3405 | 4084 | 3612 | 5967 | 1.245 | 1.512 | 1.302 | 1691 | 1878 | 1649.9 | | 12,055 | 1 2 | | 5.268 | 2410 | 2896 | 2521 | 3321 | 1.293 | 1.365 | 1.352 | 1525 | 1695 | 1633.1 | 11.117 | 11,011 | 13 | | 2.949 | 1635 | 1971 | 1714 | 2666 | 1.571 | 1.655 | 1.640 | 1377 | 1530 | 1499.5 | 9,718 | 9,626 | 1 4 | | 2.594 | 935 | 1472 | 1280 | 2303 | 2.085 | | 2-179 | 1285 | 1430 | 1403.2 | 8,338 | 8,259 | 1 5 | | 3.36 | 284.6 | 1128
3473 | 2859 | 2045
3425 | 3.930
1.391 | 1.405 | 4.097 | 1214 | 1348 | 1319.6 | 6.588 | 8.525 | 1_6 | | 2.97 | 1930 | 2359 | 1936 | 2785 | 1.538 | | 1.593 | 1710
1506 | 1744
1542 | 1713 | 11,640 | 11,557 | 1 3 | | 2.976 | 1980 | 2430 | 2000 | 2847 | 1.464 | 1.493 | 1.478 | 1488 | 1545 | 1515
1515 | 10,663 | 10,558
10,632 | 8 | | 2.584 | 1305 | 1596 | 1509 | 2255 | 1.956 | 1.963 | 1.944 | 1305 | 1342 | 1515 | 9,349 | 9.257 | 10 | | 2.298 | 1000 | 1217 | 1004 | 1939 | 3 - 390 | 3.431 | 3.400 | 1165 | 1193 | 1171 | 7.998 | 7,927 | lii | | 2.319 | 1005
770 | 1241 | 1019 | 1948 | 3.121 | 3.183 | 1 5.152 | 1157 | 1203 | 1182 | 8,061 | 7.982 | 12 | | .014 | 780 | 936
954 | 770
788 | 1705
1715 | 15.06 | 13.15 | 15-03 | 1032 | 1049 | 1030 | 6,306 | 6.249 | 12 | | 339 | 2790 | 3416 | 2807 | 3414 | 11.51 | 11.51 | 11.41 | 1009 | 1045 | 1027 | 6,369 | 6,312 | 14 | | .32 | 2795 | 3402 | 2798 | 3434 | 1.379 | 1.402 | 1.390 | 1693
1690 | 1734 | 1700
1694 | 11,663 | 11,548 | 16 | | 2.956 | 1920 | 2352 | 945 | 2765 | 1.518 | 1.540 | .7482 | 1493 | 1535 | | 10,840 | 11,537
10,579 | 117 | | .561 | 1300 | 1591 | 1308 | 2251 | 1.994 | 2.020 | 2.000 | 1296 | 1550 | 1504 | 9.340 | 9.248 | 10 | | 2.288 | 1006 | 1222 | 1009 | 1941 | 3.390 | 3.428 | 3.397 | 1160 | 1188 | 1167 | 7,998 | 7.927 | 19 | | .016 | 785 | 956 | 790 | 1707 | 13.54 | 15.69 | 13.57 | 1024 | 1047 | 1029 | 6.325 | 6,269 | 20 | | .982
.571 | 1935 | 2572
1575 | 1942 | 2783 | 1.534 | 1.555 | 1.540 | 1506 | 1548 | 1518 | 10,685 | 10.579 | 21 | | .298 | 983 | 1203 | 1240
986 | 2259
1943 | 1.956 | 1.974 | 1.955 | 1211 | 1335 | 1308 | 9,305 | 9,210 | 22 | | | 769 | 942 | 772 | 1710 | 5.151
11.15 | 3.192
11.26 | 3.160 | 1163 | 1193 | 1169.9 | 8,006 | 7,927 | 23 | | | 2555 | | | | | 11.20 | 11.14 | | | | 6,319 | 6,256 | 24 | | | 2495 | | | | | | | | | | | | 28 | | .264 | 2560 | 3422 | 2568 | 3069 | 1.454 | 1.447 | 1.456 | 1707 | 1694 | 1715.5 | 11,809 | 11,878 | 27 | | .096 | 2275 | 3037 | 2291 | 2901 | 1.443 | 1.438 | 1.447 | 1616 | 1807 | 1627.3 | 11,492 | 11,560 | 26 | | .910 | 1450
943 | 1940
1248 | 1462
946 | 2258 | 1.611 | 1.600 | 1.611 | 1335 | 1517 | 1335 | 10,486 | 10.537 | 29 | | .446 | 688 | 908 | 692 | 1542
1263 | 3.470 | 3.449 | 3.474 | 1001 | 991 | 1008 | 9,176 | 9,258 | 30 | | .094 | 500 | 668 | 498 | 3501 | -7.478
-1.760 | -7.424
-1.754 | -7.478
-1.761 | 762 | 750 | 572 | 7,843 | 7,903 | 31 | | -678 | 2285 | 4226 | 2292 | 2567 | 1.493 | 1.452 | 1.405 | 575
1780 | 567
1906 | 573
1780 | 6,226 | 6,256
11,961 | 32
33 | | -634 | 2230 | 4115 | 2243 | 2536 | 1.395 | 1.443 | 1.396 | 1759 | 1884 | 1763 | 12,289 | 11,866 | 34 | | .481 | 2015 | 3726 | 2017 | 2408 | 1.411 | 1.461 | 1.411 | 1685 | 1805 | | 11,928 | 11,525 | 33 | | .925 | 1365 | 2522 | 1367 | 1940 | 1.520 | 1.577 | 1.521 | 1415 | 1519 | | 10.927 | 10,548 | 36 | | .954 | 925
745 | 1713 | 932 | 1448 | 2.342 | 2.433 | 2.549 | 1126 | 1216 | 1134 | 9,580 | 9.248 | 37 | | .541 | 570 | 1576
1047 | 747 | 1170 | 7.680 | 7.989 | 7.691 | 942 | 1015 | 946.1 | 8,205 | 7,919 | 38 | | .823 | 1891 | 45C6 | 572
1901 | 972
2145 | 1.541 | 7 /70 | 7 744 | 749 | 799 | 743 | 6,462 | 6,248 | 39 | | -740 | 1829 | 4592 | 1846 | 2088 | 1.349 | 1.436 | 1.344 | 1732 | 1987 | 1740.6 | 12,519 | 11,712 | 40 | | -013 | 1728 | 4100 | 1739 | 1868 | 1.585 | 1.694 | 1.587 | 1822 | 1945
2083 | 1897.4
1825.6 | 12,343
12,144 | 11,537 | 41 | | .319 | 1325 | 5152 | 1321 | 1705 | 1.465 | 1.560 | 1.458 | 1517 | 1725 | | 11,232 | 10,500 | 43 | | -814 | 940 | 2259 | 951 | 1520 | 2.065 | 2.218 | 2.975 | 1269 | 1461 | 1277.6 | 9.893 | 9,248 | 44 | | .467 | 773
867 | 1854 | 775 | 1107 | 3.735 | 4.00 | 3.739 | 1115 | 1279 | 1117.2 | 8,464 | 7.911 | 44 | | .923 | 1700 | 1609 | 670
1681 | 964
1887 | 9.96 | 10.66 | 9.955 | 1010 | 1158 | 1010 | 6,700 | 6.256 | 46 | | | 1675 | 4557 | 1641 | 1882 | 1.255 | 1.344 | 1.235 | 1773 | 2034 | 1717.16 | 70 | 11,342 | 14.7 | | -564 | 1374 | 3758 | 1355 | 1685 | 1.265 | 1.359 | 1.247 | 1764 | 2025
1849 | 1700.6
1557.0 | 12,345 | 11,516
10,705 | 48 | | .958 | 1245 | 3407 | 1229 | 1403 | 1.869 | 1.792 | 1.844 | 1781 | | | 11,317 | 10,781 |
50 | | .126 | 630 | 2439 | 879 | 1180 | 1.812 | 1.941 | 1.782 | 1413 | 1621 | 1365.4 | 9,875 | 9,063 | 51 | | .867 | 745 | 2049 | 736 | 1051 | 2.690 | 2.881 | 2.643 | 1308 | | 1261.0 | 8,464 | 7,760 | 52 | | -679 | 1510 | 4171 | 1508 | 1700 | 7 (82 | | | 3 - 42 | | | | ~ | 53 | | | 1410 | 3903 | 1401 | 1627 | 1.408 | 1.469 | 1.414 | 1755 | 1909 | 1768 | 12,384 | 11,901 | 54 | | .541 | 1395 | 3889 | 1397 | 1822 | 1.45 | 1.462 | 1.408 | 1712 | 1834
1838 | 1898.9
1702.7 | 11,928 | 11,481 | 55
56 | | -899 | 935 | 2575 | 944 | 1254 | 1.618 | 1.578 | 1.618 | 1400 | | | 11,963
10,927 | 11,510
10,537 | 135 | | .200 | 720 | 1978 | 719 | 919 | 2.939 | 5.053 | 2.945 | 1058 | | 1061.1 | 9.5001 | 9,229 | 58 | | .657 | 570 | 1571 | 574 | 683 | 14.62 | 1.523 | 14.67 | 792 | 860 | 798.3 | 6.235 | 7,935 | 59 | | .435
.485 | 856
874 | 3227 | 860 | 1014 | 1.709 | 1.825 | 1.692 | 1549 | 1783 | 1520 | 11,306 | 10,471 | 60 | | 983 | 752 | 3343
2627 | 863 | 1020 | 1.716 | 1.847 | | 1564 | 1608 | 1514 | 11.327 | 10,458 | 61 | | .539 | 675 | 2550 | 757 | 929 | 1.872 | 1.988 | 1.856 | 1369 | | 1361 | 10,707 | | 62 | | .066 | 573 | 2176 | 564
584 | 769
615 | 2.79
8.56 | 2.988 | 2.756 | 1150 | 1315 | 1042 | 9,875 | 9,116 | 63 | | .716 | 495 | 1878 | 488 | 509 | 0.55 | 1.964 | 8.463 | 936
781 | 1074
891 | 809
740 | 8,406 | 7,814 | 84
85 | | .310 | 680 | 3250 | 650 | 156 | 1.948 | 2.088 | 1.868 | 1496 | | | 6,681
10,767 | 6,170
5,651 | 66 | | .357 | 695 | 3330 | 665 | 753 | 2.119 | 2.274 | | 1514 | 1443 | | 10,807 | | 67 | | .953 | 632 | 3025 | 693 | 659 | 2.835 | 3.045 | | 1329 | | 1223 | 8,902 | | 68 | | .633
.408 | 570
495 | 2741
2386 | 548 | 550 | 5.04 | 5.398 | | 1190 | | 1030 | 8,464 | 7,564 | 69 | | | | | 472 | 486 | 12.37 | 13.25 | 11.85 | | | | 8,700 | | | TABLE 1. - PERFORMANCE AT VARIOUS ENGINE-OPERATING AND | 4 | NACA | _ | | | • • | | | | | | - | | | | | | | | |----------------------|--------|-------------------------|-----------------------|----------------------|--|----------------------------|------------|-------------------|--------------------|---------------------|--------------------|-------------------------|-------------------|-------------------|-------------------|-------------------------|-------------------------|--------------------------------| | Run | Alti- | Ram
pres- | Flight | Tunnel
static | Reynolds | Engine
speed | Equiva- | Engine-
inlet | Jet
Alti- | thrust. | (1b) | Engine
total- | Net
Alti- | Cor- | (1b)
Ad- | Alt | flow, () | b/seq) | | | (rt) | sure
ratio | number
No | pressure
Po | index | (rpm) | ambient | indi- | tude
Pj | rected | justed
F; | pres- | tude
Fn | reqted
Pn | Justed
Pn | tude
Wa | rected
Wa-√or | Justed
Y _m √0adj | | | 1 | Pl | 1.0 | (20) | $\frac{\delta_{\mathrm{T}}}{\#\sqrt{\theta_{\mathrm{T}}}}$ | 1-2- | temper- | temper- | | ₹ <u>1</u> | bads | P ₅ | i | 5 7 | Bads | - | 87 | Padj | | | 1 | PO | | (sq ft abs.) | FV°T | i i | t
(OR) | Tí
(°R) | | 1 | | Pz | 1 | | 1 | İ | | 1 1 | | ⊢ | Щ | | | | | (1 | | st-nozzl | e area, | 164 89 | uare 1 | nches. | | <u> </u> | | <u> </u> | | <u></u> | | 1 | 5,000 | 1.086 | 0.290 | 1754 | 0.9921 | 12,513 | 464 | 470 | 5248 | 3709
3716 | 3251
3267 | 2.089
2.087 | 2748
2754 | 3138
3145 | 2759 ·
2765 | 54.35
54.58 | 59.13 | 52.52
52.48 | | 3 | ļ i | $\frac{1.056}{1.058}$ | .286 | 1754
1756 | 1.005 | 12,513
11,525 | 460
461 | 466 | 3254
2647 | 3243 | 2856 | 11.945 | 2356
1682 | 2662
1923 | 2562 | 52.65 | 57.02
50.42 | 50.63 | | 4
5 | 1 | 1.055 | .278
.278 | 1754
1754 | .9940
.9930 | 10,537
9,220
7,905 | 464 | 470
470 | 2103
1258 | 2404
1439
884 | 2111
1265 | 1.677 | 938 | 1075 | 942
530 | 36.12
27.26 | 38.28 | 33.94
26.32 | | 6 7 | | 1.053
1.053 | .273
.275
0.515 | 1755
1755
1454 | .9990
.9930
0.8418 | 6.256 | 482
484 | 468
470
508 | 771
409
3035 | 469
3686 | 776
411
5038 | 1.209
1.061
1.984 | 234 | 268 | 235
2197 | 19.36 | 21.36 | 15.92 | | 8 | 10,000 | 1.205 | .512 | 1455 | .8467 | 12,513
12,513 | 482 | 506 | 3031 | 3689 | 3037 | 1.952 | 2200 | 2677
2052 | 2204
1896 | 48.45 | 58.29
55.04 | 48.50 | | 10 | | 1.208 | .519
.524 | 1457
1454 | .8418
.8576 | 11,525
10,537 | 486
480 | 510
504 | 2495
1839 | 3016
2218 | 2495
1841 | 1.770 | 1697
1136 | 1372 | 1128 | 40.02 | 47.65 | 38.93 | | 12 | } ! | 1.205 | .515 | 1456
1458 | .8496
.8340 | 9,220 | 481
490 | 507
516 | 1067
632 | 1294
763 | 1067
652 | 1.221 | 545
207 | 661
250 | 545
207 | 50.32
24.12 | 36.35
29.06 | 30.26
24.29 | | 14 | { | 1.205 | .519 | 1456 | .8525
.8482 | 8,256
12,513 | 481 | 506
505 | 351
3053 | 425
3703 | 351
3051 | 1.988 | 29
2218 | 2690 | 29
2216 | 18.57
48.53
49.18 | 22.23
58.28 | 18.55
48.50 | | 16
17 | | 1.207 | .516 | 1461
1459 | .8547
.8525 | 12,515 | 480
481 | 505
605 | 3076
2545 | 3713
3077 | 3066
2540 | 1.985 | 2226
1751 | 2687
2117 | 2218
1747 | 46.05 | 58.62
55.03 | 45.66 | | 18 | | 1.212 | .527
.527 | 1450
1449 | .8532 | 9,220 | 480 | 506
508 | 1845 | 2229
1298 | 1852 | 1,506 | 1143 | 1581 | 1146
547 | 39.88 | 47.62
55.64 | 59.92
30.07 | | 50
50 | [| 1.205
1.209
2.032 | .520
.525 | 1454
1458
784 | .8606 | 7,903
6,256 | 478
480 | 502
506
524 | 655
344
3146 | 793
415
4221 | 856
344
3148 | 1.070
.9585 | 255 | 262
19
2492 | 235
16
1711 | 24.36 | 29.06
22.21
58.33 | 24.25
18.63 | | 22
23 | 26,000 | 2.032 | 1.052 | 784
785 | 0.7510
.7299 | 12,513 | 432
432 | 524
526 | 3184 | 4221 | 3164 | 11.870 | 1709 | 2501 | 1 1735 | 48.11 | 56.05 | 43.04 | | 24
25 | (| 2.030 | 1.052 | 787
785 | .7321
.7364 | 11,525 | 452 | 526
524 | 260 0 | 3484
2487 | 2601
1859 | 1.628 | 1276
709 | 1072 | 1273
709 | 39.95
34.58 | 53.83
46.54 | 36.54
34.58 | | 26
27 | | 2.004 | 1.043 | 792
791 | .7448 | 9,220
7,903 | 427
428 | 519
524 | 1101
647 | 1479
862 | 1091 | .9670 | 176
-105 | 319
-104 | 174
-104 | 26.15
22.70 | 31.81
30.36 | 27.82 | | 28 | 1 | 1.508 | .781 | 786
788 | .6083
.6109 | 12.513 | 431
429 | 482.
480 | 2299 | 4140 | 2298 | 2.000 | 1465 | 2635
2619 | 1461 | 35.86
33.91 | 58.68 | 33.85 | | 30
31
32
33 | | 1.505 | .779 | 787
786 | .6135
.6135 | 12,513
11,525
10,537 | 429 | 479 | 2005
1463 | 3609
2636 | 1998 | 1.627 | 1195
753 | 2153
1357 | 1192
752 | 32.86 | 57.01
50.03 | 32.74 | | 32 | 1 | 1.508 | 785 | 787
786 | .6169 | 9,220
7,903 | 428
450 | 480
481 | 84.7
600 | 1518 | 845
499 | 1.135 | 285 | 511
94 | 284
52 | 22.73
18.18 | 39.21 | 22.63
18.16 | | 34
35 | l | 1.498 | .779 | 787
786 | .6127
.5400 | 6,256 | 451
427 | 481 | 229
1827 | 4085 | 228
1825 | 2.115 | -98
1352 | -176
5008 | -98
1350 | 13.26
26.51 | 25.05 | 15.26
26.38 | | 136 | | 1.210 | .520 | 778 | .5280 | 12,513 | 450 | 451
451 | 1770 | 4006
3561 | 1786
1602 | 2.107 | 1313 | 2971.
2524 | 1325
1136 | 27.83 | 56.83 | 26.08 | | 37
38
39 | 1 | 1.220 | .524 | 781
786 | 1 .5408 | 11,525 | 426 | 448 | 1221 | 2728 | 1219 | 1.899 | 809 | 1807 | 808
389 | 25.01
18.03 | 51.97 | 24.88 | | (40 | l | 1.205 | .518
.525 | 781
781 | .5325°
.5362 | 7,903 | 429 | 451 | 415 | 931 | 417 | 1.121 | 166 | 375 | 187 | 15.06 | 31.55 | 15.11 | | 41 | | 1.062 | .521 | 785
789 | .5328
4726 | 6,256
12,613 | 430
445 | 455
451 | 214
1545 | 481
3810 | 1535 | .9788
2.175 | 1275 | 3325
3276 | 1305 | 25.13
26.21 | 59.43 | 25.48
25.88 | | 44 | [| 1.068 | 1 .502 | 784
782 | .4721
.4693 | 12,513
11,525 | 445 | 451
452 | 1557
1552 | 3895
3387 | 1559
1357 | 2.166 | 1098 | 2792 | 1294 | 124.31 | 57.81
58.05 | 24.84
24.94 | | 45
46 | 1 | 1.067 | .299 | 781
786 | .4693
.4755 | 11,525 | 446 | 451
450 | 1550
1017 | 3386
2560 | 1337
1016 | 2.008 | 1095 | 2788 | 811 | 24.38
21.84 | 51.65 | 22,15 | | 47 | 1 | 1.057 | .278 | 786
782 | .4697 | 9,220 | 448 | 451
453 | 589° | 1505
859 | 556
334 | 1.405 | 244 | 1153
630 | 245 | 16.25
10.54 | 35.74
25.43 | 10.80 | | 50 | 40.000 | 1.053 | 1.048 | 778 | 0.4124 | 6.256 | 450
391 | 457 | 1715 | 4634 | 1720 | 2.024 | 994 | 2686 | 997 | 3.17
22.84 | 25.43
22.20
59.16 | 22.88 | | (61 | 1 | 2.043 | 1.058 | 391
394 | .4184 | 12,513 | 389
392 | 474 | 1753
1500 | 4689 | 1758
1492 | 2.029
1.856 | 1023
805 | 2137 | 1026
801 | 22.99 | 58.90
57.05 | 22.94 | | 52
53 | 1 | 2.051 | 1.061 | 393
392 | .4191 | 10,537 | 391
389 | 478 | 1159 | 3069
1744 | 1156
652 | 1.487 | 535
151 | 1417 | 151 | 19.84 | 40.51 | 18.45 | | 54
55
56 | | 2.020 | 1.050 | 594
590 | .4170
.4102 | 7,903 | 391
395 | 477 | 393
159 | 1051 | 391
160 | .6372 | -147 | -393 | -148 | 12.30 | 31.55 | 12.21. | | 57 | ĺ | 1.526 | 793 | 594
598 | .5342
.5376 | 12,513 | 405 | 453
452 | 1254 | 4381
4440 | 1228
1240 | 2.129 | 806
826 | 2865 | 804 | 17.53 | 58.32
59.12 | 17.71 | | 59
60 | 1 | 1.529 | .798 | 39Z
394 | .5381 | 11,525 | | 450
451 | 1111 | 3944
3037 | 1108 | 1.653 | 695 | 2460
1712 | 681
481 | 17.20 | 56.98 | 17.32 | | 61
62 | 1 | 1.513 | 787 | 396
394 | .5570 | 9,220 | 405 | 452
455 | 476 | 1690
1162 | 471
326 | 1.195 | 188 | 667
530 | 186
83 | 9.68 | 39.43 | 11.99 | | 63 | 1 | 1.516 | .791 | 390
391 | .3529
.2671 | 6,256
12,578 | 403 | 455
450 | 154 | 481 | 135 | 2.212 | -49
678 |
-176
3046 | 680 | 7.58 | 25.45
58.62 | 14.65 | | 65 | | 1.216 | .552 | 391 | .2719
.2726 | 12,250 | 427 | 451
450 | 904
895 | 5977
5945 | 907
866 | 2.125 | 656
656 | 2888
2892 | 658 | 14.27 | 58.65
58.59 | 14.51 | | 66
67
68 | | 1.220 | (| 396
394
593 | .2726 | 12,100 | | 451
450 | 819 | 3647 | 815 | 2.044 | 590 | 2634 | 589 | 15.76 | 57.32 | 14.32 | | 69 | 1 | | | 594
592 | 2668 | 10,537 | 1 | 452 | 539 | 1510 | | | 186 | 529 | 186 | 1 | 37.79 | 1.50 | | 70 | | 1.199 | .532 | 396 | .2673
.2673 | 1 7 903 | 431 | 454
454
454 | 169 | 844
366 | 359
187
82 | 1.314 | 73 | 326
-31 | 72 | 9.07
7.12
5.32 | 29.73 | 7.34
5.56 | | 72 | 47,000 | | | 277
287 | 0.1915
.1979 | 6.256
12,063
11,938 | 427 | 451 | 637
641 | 3988
3904 | 646
628 | 2.154 | 466 | 2917 | 473
462 | 10.04 | 57.86 | 10.61 | | 74
75 |] | 1.208 | .519 | 287
283
282 | .1930 | 1 11 . 658 | 1 428 | 450
451 | 592 | 3685
3725 | 588
600 | 2.074 | 432 | 2689 | 429 | 9.78 | 56.74 | 10.14 | | 76 | Į | 1.220 | .562 | 276 | .1933 | 11,613 | 426 | 453 | 558 | 3452 | 558 | 1.956 | 590· | 2413 | 397 | 9.52 | 55.03 | 10.09 | | 78 | 55,000 | 1.831 | 0.798 | 276
196 | 0.1727 | 12,100 | 394 | 448 | 559
634 | 4502 | 618 | 2.185 | 396
420
399 | 2982 | 403
409
393 | 8.86 | 58.32
58.32
58.16 | 10.05
8.66
8.55 | | 80
81 | | 1.521 | .798 | 194
194 | .1652
.1658 | 12,000 | 404 | 451
454 | 563 | 4392
4182 | 597
574 | 2.064 | 379 | 2719 | 375 | 8.33 | 55.84 | 8.32 | | 82 | 1 | 1.552 | | _192 | .1860 | 11,563 | 402 | 453 | 571 | 4096 | 568 | 2.037 | 365 | 2618 | 363 | 6.33 | 30.08 | | ## SIMULATED-FLIGHT CONDITIONS WITH MIXER VANES INSTALLED - Continued | | | | | | | | | | | | - | NACA. | ممم | |-------------------------|--------------|--------------|--------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------------------------|------------------|------------------|------------| | Engine
total- | Pu- | cor- | (lb/hr) | Turbine- | Specific | fuel c | onsumption | | aust ga | s total | COT- | Ad- | Run | | temper- | tude | rected | justed | total | l | 1b/hr
1b | | Alti- | Cor- | <u>е, (^оя)</u>
Гад- | rected | justed
engine | ll | | ature | W.f | N. | Wr | pressure | AIt1- | Cor- | Ad- | tude | rected | fusted | speed | speed | | | ratio
T ₅ | ' | or ver | Sadj (Sadj | P ₅ | tude | rected | justed | T ₈ | T ₈ | T ₈ | <u>x</u> | _ NZ | 1 1 | | T2 | 1 | 1 * * * | 1 203 | V 15 \ | W _f | W _f | We | 1 | <u>6</u> ₹ | Padj | √e _T | 19ads | Ιi | | -2 | | | i | (sq ft abs.) | P _n | Fn 1/87 | Fn 10adj | 1 | - | | (rpm) | (rpm) | 1 | | | | | (1 | b) Exhaust-no | zizle area | 1, 164 s | quare incl | es. | | | | | | | 3.522 | 3405 | 4083 | 3552 | 3870 | 1.238 | 1.301 | 1.287 | 1659 | 1830 | 1792 | 13,139 | 13,001 | ī | | 3.529
3.207 | 3395
2810 | 4086
3367 | 3558
2940 | 3867
3611 | 1.254 | 1.299
1.255 | 1.287 | 1648 | 1831 | 1795 | 113,139 | 13,064 | 2 | | 2.681 | 2100 | 2523 | 2193
1565 | 3104 | 1.248 | 1.312 | 1.245 | 1504 | 1665 | 1635
1485 | 12,124 | 12,021
10,958 | 3 4 | | 2.682
2.563 | 1500
1177 | 1802 | 1565
1231 | 2536 | 1.500 | 1.619 | 1.662 | 1263 | 1593 | 1364 | 9,681 | 9,580 | l 5 I | | 2.463 | 921 | 1419 | 962 | 2232
2014 | 2,252 | 2.349 | 2.324 | 1202 | 1331 | 1305 | 8,314 | 8,227
6,500 | 6 | | 3.269 | 2960 | 3629 | 962
2960 | 2014
3456 | 3.935
1.348 | 1.381 | 1.547 | 1160
1667 | 1279
1697 | 1664 | 6.569
12,626 | 12,499 | 8 | | 2.920 | 2935
2320 | 3614
2624 | 2944
2311 | 3445
3098 | 1.335 | 1.350 | 1.335 | 1657 | 1697 | 1660 | , 12, 663 | 12,526 | 10 | | 2.613 | 1712 | 2091 | 1719 | 2642 | 1.505 | 1.524 | 1.509 | 1322 | 1516
1356 | 1486 | 11,606 | 10,569 | 111 | | 2.357 | 1190
951 | 1450 | 1192
944 | 2131
1863 | 2.182
4.595 | 2.209
4.604 | 2.187 | 1110 | 1224 | 1200 | 9,331 | 9,238 | 12 | | 1.953 | 754 | 924 | 756 | 1677 | 26.0 | 26.31 | 26.07 | 930 | 1114 | 1109
984 | 7,919
6,331 | 7,846
6,269 | 13 | | 3.281
3.283 | 2970
2990 | 3639
3656 | 2968
2989 | 5467
5480 | 1.54 | 1.353 | 1.539 | 1670 | 1703 | 1670 | 6,331
12,638 | 12,513 | 15 | | 2.947 | 2355 | 2881 | 2355 | 3480
3132 | 1.344
1.345 | 1.361 | 1.347 | 1661 | 1704
1530 | 1570 | 12,676 | 12,551
11,548 | 16
17 | | 2.623 | 1710
1195 | 2091
1458 | 1722
1201 | 2641
2135 | 1.498 | 1.514 | 1.500 | 1330 | 1362 | 1339 | 10,663 | 10,569 | 18 | | 2.165 | 960 | 1180 | 966 | 1671 | 2.197 | 2.217 | 4.142 | 1195
1091 | 1217 | 1185 | 8,303 | 9,220 | 19 | | 3.045 | 750 | 914
3233 | 751
2426 | 1687
2942 | 46.9 | 1.410 | 47.00 | 992 | 1018 | 998 | 6.337
12,407 | 6,275
12,484 | 2 <u>1</u> | | 3.072 | 2455 | 3233
3269 | 2449
1650 | 2942
2949 | 1.422 | 1.410 | 1.418 | 1619 | 1581
1595 | 1600.6 | 12,407 | 12,484
12,484 | 22 23 | | 2.688 | 1839 | 2436 | | 2578 ` | 1.442 | 1.429 | 1.438 | 1419 | 1595 | 1412.5 | 11.427 | 11,498 | 24 | | 2.227 | 1228
877 | 1634
1176 | 1228
872 | 2043
1525 | 1.732
4.985 | 1.722 | 1.752
5.000 | 1169 | 1156
904 | 1169 | 10,477 | 10,537
9,248 | 25
26 | | 1.575 | 637 | 846 | 633 | 1206 | -6.07 | -5.C4B | -6.76 | 718 | 715 | 721.6 | 7,875 | 7,919 | 27 | | 3.329 | 2017 | 3760
3796 | 2012
2019 | 2345
2346 | 1.378
1.395 | 1.427 | 1.377 | 1611 | 1725 | 1607 | 12,951 | 12,498 | 56 | | 5.008 | 1652 | 3092 | 1650 | 2145 | 1.585 | 1.456 | 1.584 | 1614 | 1743
1563 | 1617
1450 | 13,001 | 12,526 | 29
30 | | 2.585
2.081 | 1203
879 | 2254
1636 | 1205
579 | 1776
1340 | 1.597 | 1.661 | 1.500 | 1241 | 1343 | 1247 | 10,958 | 10.558 | 51 | | 1.772 | 700 1 | 1310 | 699 | 1109 | 3.087
15.47 | 3.204
13.98 | 3.091
13.46 | 1001
854 | 1081
920 | 1006
854 | 9,580
8,203 | 9,238
7,903 | 32
33 | | 1.482
3.676 | 561
1815 | 1048
4332 | 559
1818 | 956 | -5.725 | -5.939 | -5.714 | 716 | 770 | 714 | 6,487
13,926 | 6,248
12,551 | 34 | | 3.634 | 1768 | 4286 | 1784 | 2011
1970 | 1.544 | 1.440 | 1.546 | 1658
1646 | 1908 | 1670
1646 | 15,926 | 12,551
12,513 | 35
36 | | 3.247 | 1490 | 3559 | 1497 | 1852 | I.319 | 1.410 | 1.347 | 1474 | 1685 | 1474 | 15,401
12,520 | 11,525 | 37 | | 2.911 | 868 | 2835 | 1183
875 | 1609
1246 | 1.459 | 1.569
2.403 | 1.465
2.245 | 1136 | 1511
1305 | 1319
1138 | 11,327
9,875 | 9,239 | 38
39 | | 2.262 | 735
587 | 1771
1415 | 741 | 1057 | 4.45 | 4.753 | 4.440
17.79 | 1020 | 1174 | 1027 | 8,480 | 7,927 | 40 | | 3.788 | 1670 | 4533 | 589
1634 | 922
1816 | 17.8
1.274 | 19.06 | 17.79 | 941
1712 | 1079
1964 | 941
1654 | 6,700
13,401 | 6,256
12,300 | 42 | | 3.757 | 1661 | 4508
3733 | 1635 | 1809 | 1.285 | 1.376 | 1.263 | 1702 | 1952 | 1645 | 13.401 | 12.300 | 43 | | 3.346 | 1373 | 3738 | 1353
1355 | 1669
1669 | 1.250
1.254 | 1.337 | 1.228 | 1521
1519 | 1739
1736 | 1466 | 12,320
12,320 | 11,316
11,316 | 44 | | 3.051 | 1116 | 3037 | 1098 | 1468 | 1.375 | 1.474 | 1.353 | 1376 | 1584 | 1464
1336 | 11,506 | 10.381 | 46 | | 2.683 | 717 | 2502
1976 | 826
705 | 1165
1015 | 1.896
2.96 | 2.032
3.139 | 1.863
2.877 | 1275 | 1462
1592 | 1229
1169 | 9,875 | 9,053 | 47 | | 3.442 | 589
1420 | 1620 | 581 | 895
1585 | 7.48 | 7.949 | 7.291 | 1202 | 1392 | 1149 | 6,669 | 7,743
6,115 | 49 | | 3.442 | 1437 | 4002
4013 | 1427 | 1585
1605 | 1.428 | 1.490 | 1.432 | 1642
1640 | | | 13,051 | 12,558 | 50 | | 3.080 | 1174 [| 3300 j | 1169 | 1475 | 1.459 | 1.520 | 1.412 | 1469 | 1788
1598 | 1656
1473 | 12,064 | 12,576 | 51
52 | | 2.588 | 887
672 | 2444 | 887
675 | 1188
834 | 1.658
4.445 | 1.725 | 1.662 | 1230 | 1333 | 1236 | 10.969 | 10,558 | 53 I | | 1.514 | 539 | 1503 | 537 | 646 | 134.7 | 140.5 | 4.470 | 922
722 | 1005
786 | 725.6 | 9,626
8,243 | 9,266
7,919 | 54
55 | | 1.101 | 1207 | 1166 | 422
1185 | 504
1269 | -2.865
1.495 | -2.966
1.594 | -2.857
1.472 | 533
1686 | 571
1919 | 530.2
1636 | 6,475 | 5,240 | 56
57 | | 3.703 | 1186 | 4472 | 1152 | 1268 | 1.435 | 1.535 | 1.416 | 1681 | 1921 | 1635 | 13,331 | 12,327 | 57
58 | | 3.338
2.861 | 1002 | 3809
3037 | 990
788 | 1178
987 | 1.446 | 1.548 | 1.431 | 1509
1293 | 1731 | 1479 | 12,343 | 11,409 | 59 | | 2.254 | 632 | 2403 | 618 | 712 | 3.365 | 3.601 | 1.640
3.319 | 1021 | 1485
1171 | 1267
995.7 | 11,285
9,875 | 9,105 | 51
60 | | 1.938 | 532
447 | 2013 | 522
443 | 585
488 | 5.72 | 6.108 | 5.845 | 882 | 1006 | 858 | 8,440 | 7,795 | 62 | | 3.872 | 1017 | 4893 | 276 | 1042 | -9.12
1.500 | -9.778
1.606 | -9.000
1.435 | 726
1750 | 833
2007 | 708
1603 | 6,700
13,254 | 6,178 | 63 | | 3.722
3.714 | 982
966 | 4628
4571 | 945
918 | 1022 | 1.498 | 1.604 | 1.436 | 1686 | 1934 | 1551 | 13.120 | 11,753 | 65 | | | 967 | | | 1023 | 1.475 | 1.561 | 1.413 | 1675 | 1928 | 1541 | 12,997 | 11,621 | 66 | | 3.489 | 877
697 | 4192 | 838 | 969 | 1.487 | 1.592 | 1.424 | 1577 | 1809 | 1449 | 12,343 | 11,043 | 68 | | 2.641 | 587 | 2798 | 561 | 801
624 | 3.156 | 3.376 | 3.016 | 1199 | 1370 | 1093 | 9.856 | 8,804 | 69
70 | | 2.438 | 518 | 2473 | 490 | 534 | 7.092 | 7.589 | 6.781 | 1107 | 1265 | 1010 | 8.448 | 7,547 | ñ | | 3.796 | 743 | 2089 | 419
725 | 470.
728 | -62.56
1.595 | 1.708 | -59.86
1.530 | 986 | 1127 | 901
1579 | 6.688 | 5.981 | 72 | | 3.747 | 747 | 4891 | 702 | 744 | 1.633 | 1.699 | 1.519 | 1686 | 1944 | 1555 | 12,821 | | 74 | | 3.608 | 700 | 4674 | 666
668 | 705
709 | 1.621 | 1.738 | 1.555 | 1627 | 1873 | 1494 | 12,480 | 11,152 | 75 | | 3.408 | 655 | 4340 | 649 | 709
669 | 1.660 | 1.716 | 1.535 | 1625 | 1864 | 1489
1424 | 12,438 | | 76
77 | | 3.468
3.928 | 657 | 4420
5283 | 644
| 671 | 1,660 | 1.783 | 1.596 | 1557 | 1800 | 1443 | 12.108 | 10.844 | 78 | | 3.821 | 660 | 5126 | 669
643 | 651
625 | 1.656 | 1.771 | 1.636 | 1743
1727 | 2038
1981 | 1738
1668 | 13,080 | 12,084 | 79
80 | | 3-875 | 636 | 4870 | 617 | 609 | 1.678 | 1.792 | 1.654 | 1672 | 1908 | 1626 | 12,522 | 11.564 | 81 | | 3.579 | 625 | 4792 | 615 | 601 | 1.711 | 1.830 | 1.693 | 1625 | 1857 | 1589 | | 11,432 | 82 | | un | #lti-
tude
(ft) | Ram
pres-
sure
ratio | Flight
Mach
number
Mo | Tunnel
static
pressure
po | Reynolds
number
index
åp | Engine
speed
N
(rps) | Equiva-
lent
ambient
air | Engine-
inlet
indi-
cated | Jet
Alti-
tude
Fj | Cor- | (1b)
Ad-
justed | Engine
total-
pres-
sure | Net
Alti-
tude
Fn | Pn | (1h)
Ad-
Justed
P _D | Alti-
tude | Cor-
rected
May 8T | b/sec
Ad-
justed
Va v Gadj | |-------------|-----------------------|-------------------------------|--------------------------------|---------------------------------------|---|-------------------------------|-----------------------------------|--|----------------------------|------------------------------|-----------------------|-------------------------------------|----------------------------|----------------------|---|----------------------------|--------------------------|-------------------------------------| | | | ₽ <u>1</u>
₽0 | | (sq ft abs.) | $\overline{\rho\sqrt{\theta_{\mathrm{T}}}}$ | | temper-
ature
t
(OR) | temper-
eture
T ₁
(OR) | | P₁
5T | Fadj | ratio P ₅ P ₂ | | ਰ ਜੂ | Badj | | 5 _T | Sadj | | _ | | | | لــــــــــــــــــــــــــــــــــــ | | (|) Exhaus | t-nost1 | area. | . 192 sq | uere i | nches. | <u></u> | L | - | L | | L | | 2 | 5,000 | 1.061 | 0.278 | 1759
1752 | 1.001 | 12,513
12,513 | 461
461 | 467
468 | 2700
2729 | 3078
3106 | 2703
2743 | 1.797 | 2202
2204 | 2510
2508 | 2204
2215 | 54.87
54.88 | 59.42
59.58 | 52.68 | | 3 4 | | 1.080
1.062
1.057 | .283
.287
.278 | 1761
1756
1760 | 1.009
1.008
1.000 | 11,525
10,537
9,220 | 460
459
463 | 466
466
469 | 2566
1808
1078 | 2688
2058
1226 | 2566
1815
1077 | 1.685
1.495
1.272 | 1670
1362
747 | 2124
1550
851 | 1670
1366
748 | 55.63
47.57
36.13 | 57.81
51.38
59.16 | 61.57
45.68
34.78 | | Ğ
7 | | 1.057 | .280
.280 | 1785
1763 | 1.000
.9970 | 7,903
6,256 | 465
465 | 469
472 | 653
362 | 746 | 855
362 | 1.145
1.055
1.695 | 391
160
1641 | 447
182
1994 | 392
160 | 28.49
21.99 | 30.97
23.54
58.80 | 27.46
21.16 | | 8 | 10,000 | 1.206
1.207
1.209 | 0.516
.518
.520 | 1452
1452
1453 | 0.8375
-8503
.8439 | 12,513
12,513
11,525 | 486
480
484 | 510
504
509 | 24.83
2534
2094 | 3017
3017
3079
2536 | 2490
2542
2098 | 1.695
1.711
1.541 | 1641
1669
1291 | 1994
2052
1563 | 1646
1694
1294 | 48.55
48.69
46.10 | 58.80
58.67
55.32 | 48.84
48.89 | | 2 | | 1.207 | .520 | 1454
1452 | .8475
.8482 | 10,537 | 484
484 | 507
508 | 1526
935 | 1850
1129 | 1530 | 1.330 | 651
580 | 1006 | 832
381 | 39.98
31.53 | 47.98
37.60 | 40.06 | | 5 | | 1.206
1.205
1.209 | .521
.521 | 1452
1455 | .8496
.8432 | 7,903
6,256 | 485
487 | 507
511 | 565
314 | 664
379 | 567
314 | 1.017
.9326 | 133
-10 | 161
-12
4500 | 155
-10
1717 | 18.48 | 29.70
22.19
58.55 | 24.84
18.87 | | 6
7 | | 1.209 | .519
.519
.522 | 1455
1452
1454 | .9662
.8432
.8439 | 12,513
12,513
11,525 | 437
484
485 | 507
508
509 | 2550
2550
2156 | 5100
5093
2585 | 2563
2558
2140 | 1.701
1.696
1.538 | 1715
1707
1335 | 4500
4486
4076 | 1717
1712
1356 | 51.18
48.50 | 58.35
58.30
55.03 | 48.78
48.89
46.00 | | 8 | | 1.208 | .520 | 1454
1452 | .8518
.8439 | 10,537 | 482
486 | 505
509 | 1852
906 | 1855 | 1534 | 1.335 | 836
355 | 3470
2842 | 837
356 | 45.86
40.03
31.44 | 47.98
37.92 | 40.05
51.45
24.65 | | 0 | 25,000 | 1.208 | .523
.624
1.051 | 1454
1450 | .8453
.8439
0.7386 | 7,903
6,256
12,513 | 484
484 | 510
510
519 | 560
302 | 576
565 | 561
503 | 1.011 | 125
-35
1373 | 2498
2238 | 125
-35
1374 | 24.78
19.19
44.25 | 29.71
23.05
58.34 | 24.63
18.29
43.27 | | 3 | 25,000 | 2.046 | 1.057 | 784
777
784 | .7746
.7342 | 12,513 | 426
411
430 | 500
522 | 2808
2894
2818 | 3771
3892
3782 | 2811
2823
2821 | 1.808
1.831
1.801 | 1450 | 1844
1950
1853 | 1465
1382 | 45.51 | 58.59
58.37 | 43.4P | | 8 | ļ | 2.035 | 1.055 | 781
781 | .7564
.7294 | 11,525
10,537 | 428
426 | 521
520 | 2286
1646 | 3072
2197 | 2297
1654 | 1.398 | 948
479 | 1274
639 | 953
481 | 40.52
35.03 | 44.39
46.91
57.80 | 40.44
35.07 | | 7 8 | | 2.038
2.032
1.515 | 1.057
1.055
.786 | 765
762
784 | .7397
.7386
.6098 | 9,220
7,903
12,513 | 430
429
431 | 525
525
482 | 893
486
1963 | 1189
651.2 | 893
488
1965 | .8420
.6928
1.692 | -49
-265
1123 | -65
-355
2017 | -48
-265
1124 | 28 .21
22 .55
35 .77 | 37.80
30.37
58.56 | 20,21
22,62
33,84 | | 0 | | 1.521 | .790
,794 | 781
781 | .6109 | 12,513
11,525 | 429
431 | 480
482 | 2017
1720 | 3623
5077 | 2027
1729 | 1.704 | 1170 | 2101
1603 | 1176 | 34.01 | 59.08
56.71
50.40 | 34.15
33.00 | | 2 | | 1.519 | .791
.789 | 781
781 | .6124
.6124 | 10,537 | 430
429 | 481
480 | 1259
726 | 2260
1305 | 1265
730 | 1.504 | 532
157 | 955
282 | 536
158 | 29.08
22.87 | 39.63 | 29.23
22.96 | | 6 | | 1.512 | .787
.800 | 782
786
778 | .6143
.6219
.5311 | 7,903
6,256
12,513 | 429
428
429 | 481
483
453 | 413
203
1528 | 743
359
3421 | 415
205
1542 | .6777
.7644
1.789 | -40
-150
1054 | -72
-285
2380 | -40
-159
1063 | 15.21
15.99
28.09 | 31.56
23.87
58.82 | 18.26
13.94
26.51 | | 8 | | 1.219
1.224 | .533
.539 | 781
782 | .5305
.5345 | 12,513
11,525 | 431
431 | 454
454 | 1509
1324 | 3421
5371
2939 | 1517
1329 | 1.789
1.779
1.852 | 1051
848 | 2305
1683 | 1036
851 | 28.09
28.38
27.91 | 89.37
68.08 | 26.55
28.05 | | 9
0 | - | 1.216
1.217
1.216 | .531
.534 | 788
780
782 | .5362
.5308
.5316 | 10,537
9,220
7,903 | 431
432
432 | 453
455
456 | 1029
623
584 | 2282
1392
858 | 1025
827
386 | 1.466
1.188
1.044 | 601
293
125 | 1333
655
279 | 599
295
126 | 25.51
18.52
15.34 | 52.98
40.91
52.08 | 25.44
19.68
15.45 | | 2 | | 1.209 | .554
.528
.292 | 784
782 | .5239
.4658 | 6,256 | 433
447 | 457
453 | 194 | 433
3174 | 194
3174 | 1.841 | 3
1011 | 2577 | 1015 | 24.88 | 52.08
23.85
59.59 | 11.45
25.48 | | 5 | | 1.064 | .297 | 784
782 | .4655
.4682 | 12,513 | 449
448 | 455
452 | 1217
1109
897 | 3091
2827 | 5091
2827 | 1.012 | 899
890 | 2557
2245
1698 | 1000
884
867 | 22.72
24.35 | 54.14
58.05
58.58 | 25.24 | | 6 | | 1.060
1.058
1.054 | .236
.236 | 789
782
783 | .4708
.4636
.4621 | 10,537
9,220
7,905 | 447
449
449 | 452
455
457 | 514 | 2273
1515
856 | 2273
1315
856 | 1.577
1.500
1.166 | 357
214 | 514
548 | 358
215 | 24.72
17.09
13.39 | 41.00 | 25.05
17.55
15.72 | | 9 | 40,000 | 2.025 | 278 | 778
394 | 4570 | 12,513 | 451
394 | 480 | 17B | 452 | 1505 | 1.055 | 786 | 2103 | 88
782 | 22.87 | 23.85 | 10.18 | | 2 5 | | 2.066
2.008
2.051 | 1.061
1.047
1.051 | 389
394
394 | .4127
.4112
.4102 | 12,513
11,525
10.537 | 398
394
398 | 479
480
483 | 1502
1327
970 | 4018
3563
2592 | 1514
1320
965 | 1.699 | 766
625
352 | 2049
1678
941 | 772
622
350 | 22.97
22.17
29.40 | 59.15
57.31
50.01 | 25.15
22.05
19.36 | | 4 | | 2.036 | 1.057 | 393
589 | .4149 | 9,220 | 394
394 | 481
482 | 561
200 | 1431 | 560 | 1.258 | 60
-108 | 159 | -108 | 15.66 | 40.12
33.78 | 15.44
15.01 | | 6 | , ' | 2.015 | 1.071 | 391
397 | .4168
.3398 | 6,256
12,513 | 394
402 | 484
452 | 128
1072 | 337
3958 | 128
1058 | 1.411
1.199
1.784 | -176
637 | -463
2235 | -177
628 | 9.40
17.88 | 23.69
58.61 | 9.66
17.85 | | 8
9
0 | | 1.524
1.524
1.526 | .798
.792
.793 | 597
401
401 | .3459
.3466
.3426 | 12,515 | 397
399 | 446
447
452 | 1079
961
729 | 3972
3548
2642 | 1065
939
713 | 1.778 | 534
349 | 2252
1865
1217 | 535
522
341 | 18.01
17.72 | 58.62
57.55
51.00 | 17.87
17.48 | | 2 | | 1.525 | .796 | 396
398 | .3369 | 10,537
9,220
7,903 | 405
405 | 455
455 | 398
255 | 1489
592 | 594
251 | 1.063 | 101
28 | 556
91 | 100
28 | 15.66
12.15
8.37 | 40.10
30.98 | 15.48
12.21
9.38 | | 3 | } | 1.508 | .787
.535 | 398
398 | .3558
.2758 | 6,256
12,515 | 406
428 | 456
448 | 122
770 | 466
3691 | 120
762 | .7915
1.627 | -52
527 | -184
2518 | -51
522 | 7.21
14.45 | 23.87
59.18 | 7.91
14.88 | | 5
6
7 | | 1.214
1.207
1.204 | .526
.520
.516 | 401
401
402 | 2750
2734
2734 |
12,518
11,525
10,587 | 428
428
429 | 450
450
450 | 779
692
529 | 5722
3235
2524 | 762
676
516 | 1.854
1.716
1.494 | 536
463
320 | 2559
2055
1405 | 524
455
312 | 14.59
13.98
12.85 | 59.41
57.28
52.65 | 14.90
14.29
13.09 | | 8 | | 1.202 | .511
.512 | 401
597 | .2717
.2694 | 9,220 | 430
429 | 451
452 | 298
185 | 1427
882 | 291 | 1.252 | 146 | 845
290 | 143 | 9.40 | 58.76
30.97 | 9.61
7.68 | | 2 | 47,000 | 1.201 | 0.544 | <u>594</u>
282 | .2680
0.1951 | 12,613 | 450 | 452
451 | 78
567 | 465
3809 | 535 | 1.870 | 411 | 2521 | 410 | 5.31
10.28 | 22.20 | 10.41 | | 2 | | 1.206
1.225
1.220 | .520
.536
.533 | 287
287
282 | .1988
.1987
.1939 | 12,513
11,525
10,537 | 427
425
425 | 448
449
450 | 576
521
584 | 5784
5325
2565 | 564
510
588 | 1.872
1.725
1.520 | 407
551
240 | 2496
2128
1485 | 398
344
238 | 10.52
10.10
8.89 | 58.94
57.02
51.33 | 10.53
10.29
8.24 | | 5 | | 1.206 | .524 | 232
260 | .1928 | 7,903 | 428
450 | 451
453 | 228
126 | 1461
917 | 227
127 | 1.218 | 117 | 728
257 | 117 | 8.74
5.17 | 39.15
30.33 | 7.01
5.42 | | 8 9 | 55,000 | 1.207
1.560
1.538 | 0.781
.802 | 280
194 | 0.1656 | 12,565 | 400 | 455 | 557 | 4084 | 73
548 | 1.676 | 356 | 2598
2598 | 350 | 3.55
8.44 | 21.55 | 3.43 | | 0 | | 1.538
1.521
1.531 | .802
.802 | 192
192
192 | .1664
.1644
.1656 | 11,938
11,563
10,813 | 401
402
401 | 449
450
450 | 529
495
412 | 3820
3612
2986 | 526
492
410 | 1.771
1.728
1.534 | 318
294
225 | 2297
2145
1651 | 316
292
224 | 8.52
8.50
7.68 | 58.10
56.52
51.94 | 8.66
8.55
7.72 | | 5 | | 1.497 | .798
.791 | 193
194 | .1624 | 10,513
9,188 | 403
599 | 450
448 | 356
251 | 2486
1681 | 333
227 | 1.095 | 172 | 1273
672 | 170 | 6.98
5.61 | 48.00
37,35 | 6.97
5.57 | | 5 | | 1.191 | .506
.536 | 199
190 | .1337 | 12,513 | 452
427 | 452
451 | 411 | 3689
3920 | 394
430 | 1.958 | 297
311 | 2652
2849 | 285
313 | 7.11
6.92 | 59.37
59.16 | 7.15
7.25 | | 7 | | 1.201 | .519
.528 | 194
191 | .1325
.1507 | 12,225 | 428
425 | 450
451 | 409
399 | 3715
3655 | 403
599 | 1.910 | 295 | 2679
2647 | 290
269 | 6.65 | 56.67 | 7.15
6.92 | | 8 9 | | 1.206 | .519
.543
.819 | 194
189
190 | .1317
.1323
.1402 | 11,863
11,250
10,938 | 430
425
417 | 451
447
449 | 374
362
343 | 3397
3316
2950 | 368
366
345 | 1.803 | 285
251
219 | 2407
2299
1684 | 261
254
220 | 6.65
6.54
6.42 | 56.42
55.66
51.37 | 6.85
8.85 | | | | | | | | | | | | | | HACA | _ | |---|---------------------|----------------------|---------------------|-----------------------------|--------------------------|-------------------------|---------------------------|---------------------|----------------------|----------------------|----------------------------|------------------------------------|------------------| | Engine | Fu | l flow, | (1b/br)
Ad- | Turbine- | Specific | fuel co | aramption | Exhau | st gas : | total
(OR) | Cor- | Ad-
justed | Run | | total-
emper-
ature | tude
Vf | Cor-
rected
Vf | justed
Wr | outlet
total
pressure | Alti- | 10/Hr
10 | <u> </u> | Alti- | Cor- | Ad- | engine
speed | engine | | | ratio | -r | OTV OT | gedi√ <u>gedi</u> | P ₅ | tude
Wr | rected | justed
Wf | 78 | T _B | Te | √0 _T | √ _g eq1 | 1 | | 重 | | | | (sq ft abs.) | y <u>r</u> | Pn√F | Pn Vead | ţ | T | Badj | (rpm) | (rpm) | 1 | | | | | (• | Exhaust-no | | , 192 sq | | 46. | ! | | | | | | 3.015 | 2615 | 5140 | 2730 | 3335 | 1.188 | 1.248 | 1.238 | 1411 | 1565
1570 | 1533.7
1541:5 | 13,176
13,164 | 15,051
15,051 | 1 2 | | 3.025
2.764 | 2625
2195 | 3143
2629 | 2752
2292 | 3345
3158 | 1.190
1.174
1.270 | 1.251
1.257
1.357 | 1.242
1.226
1.327 | 1291 | 1434 | 1405.9 | 12,147 | 12,032 | 3 | | 2.555 | 1730
1331 | 2075
1595 | 1813
1385 | 2781
2563 | 1.780 | 1.875 | 1.853 | 1139 | 1259 | 1252.4 | 8,650 | 9,589 | 5 | | 2.388
2.354
2.777 | 1095
865 | 1514
1051
2747 | 1142
697
2245 | 2122
1959
2951 | 2.800
5.410
1.368 | 5,704
1,378 | 5.613 | 11111 | 1222 | 1207.6 | 6,563 | 6,494 | ļž | | 2.810 | 2245
2275 | 2801 | 2289 | 2981
2693 | 1.347 | 1,365 | 1.351 | 1422 | 1459 | 1430 | 12,676 | 12,551 | 9 | | 2.527 | 1822
1387 | 2226
1694 | 1824
1386 | 2324
1975 | 1.669 | 1.684 | 1.667 | 1159
1078 | 1180 | 1156 | 10,632
9,503 | 11.512
10.525
9.210 | 11 | | 2.114 | 1098
917 | 1541
1121 | 1100
920 | 1777
1633 | 69.0
-72.0 | 6.962 | 6.895 | 1019 | 1039
972 | 1019 | 7,382 | 9,210
7,903
6,250 | 13 | | 1.871
5.072 | 720
2275
2260 | 875
2926 | 718
2593
2255 | 2974
2958 | 1.327 | 1.409 | 1.394 | 1413 | 1595 | 1560 | 13,289
12,628 | 13,151 | 15 | | 2.781
2.509 | 1827 | 2766
2227 | 1825 | 2691
2532 | 1.369 | 1.380 | 1.366 | 1282 | 1453
1505
1174 | 1405
1277
1150 | 11,617
10,653 | 111.501 | 17 | | 2.262 | 1596
1090 | 1709
1330 | 1598
1090 | 1960 | 3.070 | | | 1075 | 1090 | 1069 | 9,285 | 9,191 | 119 | | 1.982 | 915
716 | 1114
874
2534 | 915
718 | 1772
1628 | 7.32
-2.047
1.378 | -20-65 | -20.43 | 945 | 958
1352 | 941 | 6.305
12,477 | 6,249
12,538 | 嬴 | | 2.686 | 1892
1923 | 2628 | 1898
1987 | 2534
2565 | 1.327 | 1.348 | 1.381
1.357
1.352 | 1351
1372 | 1594 | 1415 | 12,713 | 112.801 | 23 | | 2.615 | 1867
1412 | 2491
1891 | 1869
1422 | 2524
2202 | 1.352
1.490 | 1.484 | 1.493 | 1195 | 1186 | 1201 | 11,401 | 11,548 | 24
25
26 | | 1.885 | 1050
753 | 9963 | 1069
753 | 1776
1338 | 2.212
-15.57 | -15.27 | 2.221
-15.57 | 984
790
635 | 978
770
850 | 993
780
637 | 9,158 | 11,548
10,579
9,220
7,911 | 27 | | 1.214 | 570
1557 | 7598
2893 | 573
1557 | 1094
2001 | -2.151
1.387
1.344 | -2.14
1.435
1.395 | -2.155
1.385 | 1380 | 1478 | 1376.8 | 12,951 | 12,498 | 29 | | 2.863
2.546
2.190 | 1572
1500 | 2931
2404
1931 | 1582
1304 | 2007
1840 | 1.451 | 1.500 | 1.449 | 1380
1235 | 1486
1320
1135 | 1382.8 | 12,986
11,917
10,906 | 111.511 | 31 | | 1.867 | 1040
818 | 1527 | 1045
823 | 1538
1212 | 1.955
5.21 | 5.408 | 5.217 | 1060
900 | 989 | 901.6 | 9.570 | 9,229 | 133 | | 1.622 | 684
520
1570 | 1239
953 | 668
520 | 1055
915 | -18.6
-5.467 | -17.25
-5.593 | -16.63
-3.473
1.301 | 782
666 | 842
716 | 783.6
669.3 | 6,203
6,487 | 7,911
6,269
12,526 | 34
35 | | 3.088 | 1373 | 3280
3275 | 1383
1378 | 1691
1685 | 1.500 | 1.422 | 1.530 | 1407
1399 | 1608
1596 | 1409.6 | 15.364 | 12,998 | 37 | | 2.765 | 1180
1001 | 2735
2571 | 1184
986 | 1584
1399 | 1.392 | i 1.762 | 1.664 | 1261
1129 | 1435
1288 | 1258.1 | 11,254 | 10.524 | 38
39 | | 2.197 | 607 | 1921
1621 | 810
683 | 1125
991 | 2.753
5.46 | 2.955
6.058 | 5.440 | 1004
950 | 1141 | 945.8 | 8.425 | 1 7.865 | 41 | | 1.978 | 544
1280 | 1295
3494 | 543
1260 | 897
1526 | 181.5 | 195.5 | 1.241 | 904
1454 | 1027
1659 | 1398.6 | 13,364 | 12,273 | 43 | | 3.179
2.894 | 1267 | 3485
3015 | 1260 | 1509 | 1.289 | 1.375 | 1.260 | 1453
1314 | 1651
1502 | 1391.5 | | 12,245 | 44 | | 2.656 | 860
776 | 2600 | 957
762 | 1517
1075 | 1.093 | 1.531 | 1.406 | 1206 | 1578 | 1160.2 | 9,838 | 9.025 | 46 | | 2.461 | 678
554 | 1852
1520 | 565
546 | 963
875 | 3.170
8.370 | ¥ 3.363 | 6.238 | 1122 | 1277
1290 | 1074.8 | 8,433
6,656 | 6,108 | 4.9 | | 2.884 | 1090 | 3031
3041 | 1083
1103 | 1343
1344 | 1.58 | 1.441 | 1.585 | 1387
1388 | 1498 | 1565.5 | 13,001 | 12,497 | 50
51 | | 2.590 | 768 | 2625
2122 | 954
759 | 1229 | 1.505
2.176 | 1.563 | 1.502 | 1246 | 1546 | 1242.9 | 10.927 | . 17 510 | 115.2 | | 1.693 | 592 | 1632
1544 | 590
478 | 755
575 | 9.87 | 10.25 | 9.850 | 816
681 | 879
714 | 813.9
659.3 | 9,570 | 10,497
9,208
7,893
6,248 | 54
55 | | 3.093 | 475
336
942 | 912
3541 | 357
919 | 485
1076 | 1.479 | -1.972 | 4 -1.909 | 1401 | 1807 | 1570 | | | 124 | | 3.129
2.780 | 954
850 | 3598
3192 | 937
825 | 1074 | 1.48
1.59 | 1.597 | 1.476 | 1402 | 1624 | 1386 | 12.385 | 11.439 | 159 | | 2.391 | 750 | 2799 | 725
596 | 846
639 | 2.15
6.05 | 2.301 | 2.126 | 1083
888 | 1443
1242
1011 | 1059 | 11,285 | 9.083 | 1 60
1 63 | | 1.947 | 522 | 2296
1965
1618 | 506
416 | 544 | 1.86 | 19.09 | 18.36 | 801
671 | 912
764 | 777.3 | 8,453 | 7,785
6,155 | 83 | | 1.471
3.244 | 829
830 | 3915 | 788 | 879
899 | 1.57 | 1.689 | 1.510 | 1460 | 1683 | 1348
1345 | 13,439 | 12,019 | 64 | | 3.249
2.918 | 749 | 3879
3521 | 777
701 | 828
720 | 1.61 | 1.732 | 1.549 | 1319 | 1513 | 1208 | 12,543 | 11,031
10,085
8,814 | 66 | | 2.602
2.338 | 585 | 3218
2770 | 639
546 | 590 | 4.01 | 6 4.29 | 3.829 | 1176
1057
997 | 1549
1212
1144 | 966
913 | | | 68
89 | | 2.206 | 525
446 | 2504
2159 | 497
424 | 507
454 | 8.071
-49.55 | 1-53,11 | 1.580 | 937 | 1075
1755 | 856 | 8,464
6,700
13,401 | וזו ספר | 170 | | 3.340 | 669
672 | 4591
4428 | 659
652 | 645
646 | 1.62 | 5 1.774 | 1.585 | 1516
1554 | 1748
1561 | 1395 | 15,439 | 12,005 | 172 | | 5.009
2.668 | 570 | 4050
3774 | 585
544 | 520 | 2.37 | 5] 2.542 | 2.275 | 1208
1095 | 1383
1256 | 1107 | 11,285 | 10,097 | . 13 | | 2.425 |
498
453 | 3317
3045 | 475
435 | 414
364 | 3.40
11.05 | 11.63 | 10.56 | 1095
1040
948 | 1193 | 950.0 | 8,454
6,681 | 1 7.559 | 1176 | | 3.445 | 601 | 2725
4714 | - 391
587 | 520
544 | 1.68 | 1.815 | 32.42
1.674
1.799 | 1.54 | 1768 | 1520
1387 | 13,500 | 112.452 | 7, | | 3.131
3.029 | 578
550 | 4470
4238 | 589
541 | 519
501 | 1.81 | 2.003 | 1.850 | 1415
1369 | 1623
1570 | 1338 | 12,384 | 11,432 | 80 | | 2.717 | 517
485 | 4015 | 509 | 448
391 | 2.30
2.82 | 3.023 | 2.785 | 1226
1146 | 1409 | 1203 | 11,581 | 10,704 | 182 | | 2.167
3.590 | 452
539 | 3847
3317
5143 | 474
422
493 | 324
464 | 4.59 | 51 1.939 | 1.731 | 975 | 1124
1863 | 960.
1485 | 13,376 | 11,935 | 84 | | 3.650
3.512 | 530
527 | 5205 | 511 | 453 | i 1.70 | 51 1.826 | 1.712 | 1650
1584 | 1893
1823 | 1518. | 13,321 | 11,933 | LiBE | | 5.434
3.230 | 507
493 | 5131
4974
4795 | 497
486
464 | 445
453
420
408 | 1.78
1.75
1.86 | 1.879 | 1.682 | 1552
1465 | 1780 | 1425 | 13,117
12,919
12,38 | 11,559 | 88 | | ن د من ان | 482 | 4754 | 470 | 1 | 1.92 | 2.06 | 1.853 | 1408 | 1780 | 1306 | 12,105 | 10,844 | 189 | TABLE I. - PERFORMANCE AT VARIOUS ENGINE-OPERATING AND | | ~~~~ | | | | | | | | | | | | | | | | | | |------------|--------------|----------------|--------------|--------------------|----------------------------|------------------|------------|------------|--------------|----------------------------------|--------------|------------------|----------------|----------------|-------------------|----------------|----------------|----------------| | Run | Alti- | Ram | Flight | Tunnel | Reynolds | | Equiva- | Engine- | Jet | thrust, | (1b)
AQ- | Engine
total- | Net | thrust | (1b) | Air
Alti- | flow, (| lb/sec) | | | tude
(ft) | pres-
sure | Mach | static
pressure | number | speed
H | ambient | indi- | tude | rected | Justed | pres- | tude | rected | fusted | tude | rected | tusted | | | 120/ | ratio | Mo | Po | 8 _T | (rpm) | a1r | cated | Pj | F _j
5 _T | 7, | sure | P _n | F _n | Fn | W. | Wa¬√BŢ | Wa Vead | | | 1 | P ₁ | ľ | 1b) | | | temper- | temper- | • | ा ठ —् | Sadi | ratio | | <u>p</u> | Bads | 1 | 0 _T | Lbs | | | | <u>70</u> | | aq ft abs. | <i>\$</i> -√9 _T | i | a ture | Ti | | ١ . | | P ₅ | | _ | | 1 | _ | | | | i i | • | | i l | | į | (OR) | (°R) | | | | P2 | | | l | 1 | | | | | | | | | | | | (-1/ | | | | | | | <u></u> | | | L | | | | | | | | (| d) Exhau | st-noszl | e erea | , 274 80 | puare i | nohea. | | | | | | _ | | 1 | 5,000 | 1.060 | 0.278 | 1756 | 0.9980 | 12,513 | 463 | 468 | 1687 | 1927 | 1892 | 1.569 | 1190 | 1359 | 1194 | 54.66 | 59.42 | 52.71 | | 2 3 | 0,000 | 1.061 | -280 | 1755 | .9825 | 12,513 | 468 | 473 | 1692 | 1932 | 1697 | 1.565 | 1192 | 1561 | 1196 | 54.13 | 59.16
57.80 | 52.46
51.27 | | 3 | | 1.055 | .278
.280 | 1756
1753 | 1.007 | 11,525
10,537 | 460
462 | 465 | 1491
1150 | 1703
1528 | 1495
1166 | 1.510 | 1007
718 | 1150
821 | 722 | 48.14 | 52.33 | 46.47 | | 5 | | 1.055 | .273 | 1757 | .9960 | 8,220 | 463 | 469 | 724 | 828 | 725 | 1.124 | 395 | P452 | 396 | 36.B2 | 40.10 | 35.47 | | 6 | | 1.054 | .275 | 1759 | 1.012 | 7,903 | 458 | 465 | 465
280 | 551
320 | 465
281 | 1.065 | 201
75 | 250
86 | 201
75 | 29,72 | 32.13
24.65 | 26.44 | | 7 | | 1.054 | .276
.303 | 1757 | 1.005 | 6,256 | 461
462 | 467 | 1702 | 1923 | 1707 | 1.353 | 1148 | 1297 | 1351 | 55.74 | 59.92 | 55.71 | | 9 | 10,000 | 1.208 | 0.527 | 1756
1459 | 0.8584 | 12,515 | 461 | 505 | 1631 | 1957 | 1628 | 1.264 | 758 | 910 | 756 | 49.61 | 58.89 | 49.41 | | ıo | | 1.204 | .522 | 1456 | .8424 | 12,513 | 486 | 510 | 1606
1575 | 1938
1654 | 1606
1378 | 1.261 | 746
542 | 900
653 | 746
544 | 45.08 | 58.90
56.91 | 46.98 | | 12 | | 1.211 | .531
.528 | 1450
1447 | . 6584
. 8532 | 11,525 | 479
481 | 503
605 | 1018 | 1231 | 1024 | 1.087 | 294 | 355 | 298 | 40.98 | 49.01 | 41.14 | | 15 | | 1.205 | .524 | 1452 | .8554 | 9,220 | 481 | 505 | 628 | 759 | 530 | .9937 | 55 | 82 | 68 | 32.02 | 38.26
30.37 | 32.05
25.50 | | 14 | 1 1 | 1.210 | .529 | 1450 | .8460
.8469 | 7,903
6,256 | 485
484 | 510
509 | 593
205 | 474
245 | 395
203 | .9288
.8908 | -57
-135 | -165 | -57
-156 | 25.35 | 23.05 | 18.29 | | 18 | 25,000 | 1.513 | 0.793 | 1456
781 | 0.6101 | 12,513 | 431 | 483 | 1326 | 2374 | 1333 | 1.212 | 469 | 840 | -155
171 | 34.18 | 59.13 | 34.39 | | 17 | , | 1.504 | .787 | 783 | .6098 | 12,513 | 431 | 482 | 1557 | 2401 | 1341 | 1.214 | 493
310 | 885
556 | 311 | 33.92
32.91 | 58.82
57.00 | 34.08
35.01 | | 8
19 | | 1.507 | .789
.790 | 785
781 | .6127
.6090 | 11,525
10,637 | 430
431 | 481 | 1130
814 | 2026
1462 | 1133
818 | .9013 | 85 | 153 | 85 | 29.19 | 50.67 | 29.37 | | 50 | | 1.508 | .790 | 782 | .6128 | 9,220 | 429 | 482 | 473 | 849 | 475 | .8473 | -110 | -197 | -110 | 23.40 | 40.53 | 25.47 | | 23 | | 1.499 | .783 | 784 | .6064 | 7.903 | 432 | 485
485 | 265
135 | 240 | 265
135 | .7804
.7254 | -193
-25? | -548
-421 | -193
-237 | 18.45 | 32.12
25.47 | 16.51 | | 22 | | 1.515 | .794 | 786
786 | .6162
.5336 | 6,256 | 430
431 | 454 | 945 | 2096 | 944 | 1.514 | 460 | 1020 | 459 | 28.71 | 59.69 | 26.70 | | 24 | | 1.210 | .524 | 780 | .5291 | 112.513 | 430 | 452 | 945 | 2127 | 851 | 1.512 | 478 | 1078 | 481 | 28.21 | 59.38 | 28.58 | | 2.5 | | 1.216 | .529 | 788 | -5394 | 11,528 | 428 | 450
451 | 830
837 | 1847 | 829
640 | 1.247 | 363
212 | 808
475 | 363
213 | 27.99 | 58.11 | 25.53 | | 26
27 | | 1.215 | .529
.528 | 781
781 | .5336
.5316 | 9,220 | 430
431 | 453 | 378 | 847 | 3.80 | 1.025 | 42 | 94 | 42 | 20.15 | 42.25 | 20.25 | | 89 | 1 | 1.214 | .532 | 782 | .6330 | 7,903 | 431 | 455 | 219 | 489 | 220 | .9420 | -44 | -98 | -44 | 15.63 | 32.67 | 15.71 | | 29 | | 1.204 | .522 | 785
785 | .5302
.4773 | 6,256
12,513 | 451
442 | 455 | 129
771 | 289
1949 | 129
771 | 1.388 | -65
525 | -146
1522 | -65
523 | 25.47 | 24.67
59.96 | 11.78
26.83 | | 50 | l | 1.063 | .290 | 782 | -4675 | 12,513 | 446 | 451 | 781 | 1893 | 784 | 1.392 | 549 | 1401 | 551 | 24.87 | 59.36 | 26.42 | | 52 | | 1.068 | .302 | 786 | .4748 | 11,525 | 444 | 450 | 710 | 1795 | 709 | 1.332 | 469
328 | 1186
830 | 468
328 | 24.85 | 58.62
54.75 | 25.22
25.58 | | 33 | | 1.065 | .303 | 784
781 | .4748
.4735 | 9,220 | 444 | 449 | 554
531 | 1402
848 | 555
533 | 1.134 | 171 | 438 | 172 | 17.55 | | 17.82 | | 34
35 | | 1.052 | .270 | 785 | .4726 | 7.930 | 443 | 449 | 215 | 551 | 215 | 1.064 | 98 | 261 | . 98 | 13.49 | | 15.69 | | 38 | | 1.052
2.064 | 1.066 | 766
393 | 0.4241 | 6,256 | 589 | 178 | 1128 | 2969
2969 | 1125 | 1.198 | 384 | 1011 | 383 | 23.23 | 24.68
58.61 | 25.08 | | 37
38 | 40,000 | 1.995 | 1.020 | 395 | 4025 | 12,515 | 398 | 477 | 1055 | 2850 | 1023 | 1.236 | 413 | 1139 | 409 | 20.06 | 53.18 | 19.94 | | 39 | l i | 2.056 | 1.064 | 390 | .4195 | 111.525 | 390 | 476 | 980 | 2605 | 985 | 1.095 | 258
59 | 688
159 | 259
59 | 22.56 | 57.55 | 22.58 | | 40 | 1 1 | 2.026 | | 590
591 | .4092
.4105 | 10,537 | 394
395 | 483 | 679
352 | 1833
941 | 682
353 | -9349
-7121 | -151 | -403 | -151 | 15.51 | 60.89
40.55 | 15.80 | | 41 ·
42 | 1 | 2.036 | 1.063 | 389 | .4182 | 9,220 | 389 | 477 | 367 | 979 | 570 | .7150 | ~145 | -387 | ~146 | 16.01 | 40.95 | 18.08 | | 43 | | 1.530 | .798 | 594
596 | .5581
.3422 | 12,513 | 402
400 | 451 | 724 | 2558
2585 | 720 | 1.265 | 291
297 | 1028 | 230
294 | 17.76 | 58.63 | 17.87 | | 44
45 | 1 | 1.525 | .794 | 394 | .5414 | 12,513
11,525 | 401 | 451 | 631 | 2210 | 628 | 1.176 | 190 | 688 | 189 | 17.92 | 58.65 | 18.01 | | 46 | | 1.530 | .800 | 394 | .3403 | 110,537 | 401 | 450 | 497 | 1753 | 494 | 1.057 | 100 | 363 | 99
-3 9 | 18.27 | 55.54
41.82 | 18.35 | | 47 | i 1 | 1.528 | | 392
395 | .3383
.3438 | 9,220 | 402
398 | 452 | 270
150 | 957
527 | 270
149 | .8784 | -95 | -158
-507 | -92 | 9.89 | | 1.97 | | 48
49 | | 1.527 | .800
.558 | 391 | | 12,513 | | 450 | | l | | | | ! | | | | | | 50 | i | 1.208 | .521 | 269 | .2845 | 12,513 | 429 | 450 | 477
425 | 2157
1921 | 481
431 | 1.550 | 247
194 | 1117 | 249
197 | 14.01
13.90 | 59.11
58.57 | 14.75 | | 51
52 | 1 ' | 1.212 | .528 | 387
389 | .2662
.2643 | 11,525 | 427
431 | 452 | 338 | 1533 | 342 | 1.179 | 129 | 583 | 130 | 12.73 | 53.82 | 13.43 | | 53 | j | 1.208 | .524 | 389 | .2657 | 9.220 | 429 | 452 | 205 | 925 | 207 | 1.049 | 41 | 185 | 41 | 9.93 | | 10.46 | | 54 | ! | 1.208 | .531 | 369 | | 7,903
6,256 | | 454 | | | | | | | | | | | | 55
56 | 47,000 | 1.212 | 0.552 | 392
283 | 0.1956 | 12,515 | 426 | 448 | 350 | 2159 | 348 | 1.341 | 176 | 1086 | 175 | 10.25 | 59.63 | 10.73 | | 57 | , 550 | 1.229 | .547 | 275 | 0.1956
.1920 | 11,525 | 426 | 448 | 326 | 2047 | 338
394 | 1.285 | 154
218 | 967
1349 | 157
219 | 10.35 | 58.85
58.86 | 10.65 | | 58
59 | | 1.226 | .542
.558 | 280
277 | .1968
.1955 | 12,500
12,500 | 422
424 | 445 | 392
395 | 2425 | 401 | 1.545 | 215 | 1324 | 219 | 5.87 | 59.63 | 10.91 | | 58
50 | | 1.218 | .539 | 284 | .1983 | 12,000 | 424 | 446 | 361 | 2208 | 357 | 1.529 | 184 | 1125 | 182 | 9.00 | 59.44 | 10.74 | | 61 | | 1.213 | .528 | 282 | .1974 | 111,513 | 421 | 443 | 338 | 2097 | 357 | 1.279 | 175 | 1086 | 174 | 8.50
6.32 | 56.71
52.33 | 10.18 | | 62
53 | | 1.209 | .524 | 282
286 | .1929
.2008 | 9,938 | 429
425 | 445 | 259 | 1612 | 258
208 | 1.203 | 110 | 685
420 | 110 | 4.82 | 47.97 | 8,662 | | 64 | | 1.218 | .539 | 280 | .1969 | 8,500 | 422 | 445 | 140 | 869 | 141 | .9577 | 33 | 205 | 33 | 10.38 | 56.35 | €.575 | | 65 | |
1.221 | .547 | 280 | .1956 | 6.875 | 425 | 450 | 75 | 453 | 75 | .9058 | 8 | -48 | -8 | 10.02 | 27,59 | 5.032 | | 66
67 | 55,000 | 1.528 | .789
.796 | 201
199 | 0.1956 | 12,513 | 398 | 445 | 366 | 2705 | 570 | 1.268 | 187 | 1170 | 160 | 5.04 | 58.85 | 8.729 | | 87
88 | | 1.528 | | 199 | .1692 | 11,625 | 404 | 453 | 339 | 2383 | 325 | 1.215 | 130 | 914 | 125 | 8.59 | 56.54 | 8.360 | | 69 | | 1.538 | .806 | 197 | -1696 | 11,088 | 404 | 455 | 303 | 2123 | 294 | 1.156 | 95
56 | 566
392 | 92
54 | 7.82 | | 8.278
7.686 | | 70
71 | } | 1.533 | | 197
197 | .1693
.1702 | 9,513 | 404 | 454
451 | 160 | 1745
1128 | 241
155 | 1.050 | 16 | 113 | 16 | 5.89 | 38.77 | 5.767 | | 72 | | 1.219 | .539 | 199 | -1334 | 12,513 | 433 | 455 | 273 | 2417 | 266 | 1.372 | 153 | 1355 | 149 | 6.89 | 58.14 | 7.151 | | 73 | } | 1.201 | .519 | 197 | .1337 | 12,019 | 425 | 446 | 262 | 2579 | 258 | 1.348 | 151
116 | 1371
1018 | 111 | 6.82 | 57.55 | 6.984 | | 74
75 | ļ | 1.206 | .531 | 202 | .1351
.1340 | 11,525 | 432
434 | 454
455 | 232 | 2057
1966 | 223 | 1.263 | 114 | 1005 | 109 | 6.57 | 54.42 | 6.829 | | 76 | | 1.219 | .545 | 203 | .1381 | 10,587 | 429 | 454 | 171 | 1471 | 162 | 1.154 | 61 | 525 | 58 | 6.37 | 51.30 | 6.326 | | 77 | í | 1.237 | | 201 | .1594 | 9,220 | 426 | 451 | 129 | 1100 | 124 | .9837 | 1 42 | 361 | I +7 | 4.87 | 39.14 | 4.889 | 247 SIMULATED-FLIGHT COMDITIONS WITH MIXER VANES INSTALLED - Continued | | | | | | | | | | | | | ÄŽČA. | _ | |----------------|--------------|---------------|------------------|--------------------|------------------|---------------------|----------------------|----------------|--------------------|----------------|----------------------------|------------------|-----| | ngine | Fu- | ol flow | (1b/hr) | Turbine-
outlet | Specific | fuel com | naumption | Exhau | ust gas
erature | total | Cor-
rected | Ad- | Rt | | mper- | tude | rected | justed | total | | Cor- | | Alti- | Cor- | MA- | engine | engine | | | ture | Vf | Wr | W _f _ | pressure | Alti- | Mantan | Ad-
justed | tude | rected | justed | speed
N | speed. | 1 | | T. | | 5.7√£2 | oadi√eadi | 7 ₅ | W _f | Wr_ | W ₂ | T ₈ | 78 | 78
8 | √6 _T | √, eas | 1 | | ±5 | | | | (sq ft abs. | P _n | V _D V GT | P _{n√} θad. | | 9 <u>7</u> | Badj | (rpm) | (1701) | l | | | | | | (d) Exhau | et-norrie | | | inche | L | <u></u> | L | L | L | | -326 | 1774 | 2129 | 1851 | 2557 | 1.491 | 1.566 | 1.550 | 1093 | 1208 | 1185 | 13.161 | 13,014 | | | .316 | 1770 | 2113 | 1837 | 2529 | 1.485 | 1.552 | 1.537 | 1100 | 1201 | 1178 | 13,076 | 12,951 | 1 | | .161 | 1592
1595 | 1916
1678 | 1667
1459 | 2427
2268 | 1.581 | 1.656 | 1.650 | 1009
955 | 1121 | 1099 | 12,147 | 12,032 | L | | .030 | 1202 | 1445 | 1255 | 2079 | 3.045 | 3.197 | 3.165 | 954 | 1054 | 1032 | 9,690 | 10,969 | | | .090 | 1064 | 1284 | 1114 | 1969 | 5.29 | 5.592 | 5.537 | 972 | 1084 | 1064 | 8.346 | 8.267 | 1 | | 143 | 918 | 1105
2098 | 959
1845 | 1892 | 12.24 | 12.89
1.518 | 12.76 | 1003 | 1112
1196 | 1090 | 6,588
13,151 | 6,525 | H | | .302
.144 | 1520 | 1844 | 1845
1520 | 223 | 1.54
2.008 | 2.028 | 1.602
2.009 | 1089 | 1113 | 1173
1094 | 12,651 | 12,538 | t | | .125
.960 | 1514 | 1838 | 1509
1351 | 2211
2076 | 2.030 | 2.042 | 2.025 | 1030 | 1103 | 1084 | 12,588 | 12,474 | H | | .835 | 1341 | 1435 | 1185 | 1902 | 2.474
5.994 | 4.037 | 2.483
4.000 | 931 | 951 | 1000
934 | 11,675
10,653 | 11,571
10,558 | li | | -805 | 1002 | 1226 | 1007 | 1739 | 14.73 | 14.91 | 14.76 | 915 | 937 | 919 | 8,331 | 1 8,230 | , . | | -781 | 846
721 | 1028 | 847 | 1630 | -14.85 | -14.95 | -14.81 | 912 | 925 | 908
883 | I 7.95A | 7,886 | ŀ | | 755
171 | 1145 | 876.8
2119 | 1720 | 1563
1452 | -5.344
2.442 | -5.385
2.525 | -5.333
2.439 | 885
1053 | 901
1126 | 1051 | 6.312
12,938 | 6,249
12,498 | H | | .184 | 1154
1058 | 2144 | 1156
1041 | 1450 | 2.540 | 2.422 | 2.339 | 1057
930 | 1132
996 | 1055
1057 | 112,951 | 112.498 | 17 | | .889 | 879 | 1822 | 882 | 1314
1158 | 3.348
1.035 | 3.465
10.69 | 3.348
10.53 | 819 | 876 | 817 | 11,928
10,895 | 11.525
10,524 | li | | .507 | 705 | 1312 | 709 | 999 | -6.412 | -6.645 | -6.418 | 728 | 783 | 729.5 | 1 8.561 | 9.229 | 12 | | .427
.289 | 625
529 | 1165
974 | 625
528 | 917
864 | -5.239
-2.232 | -3.347
-2.312 | -5.233
-2.232 | 692
624 | 740
688 | 688.8
624 | 8,172 | 7,885
6,256 | 2 | | .320 | 1059 | 2460 | 1057 | 1254 | 2.258 | 2.411 | 2.257 | 1058 | 1204 | 1055 | 8,475
13,351 | 112,498 | 2 | | .330
.091 | 1036
980 | 2492
2536 | 1042
981 | 1253
1186 | 2.167 | 2.316 | 2.167 | 1058 | 1209 | 1058
950 | 13,376 | 12.513 | 12 | | .914 | 890 | 2129 | 894 | 1087 | 2.700
4.200 | 2.893
4.486 | 2.705
4.198 | 945
869 | 993 | 869 | 12,343 | 11,548 | 5 | | .802 | 769 | 1841 | 772 | 968 | 18.32 | 19.55 | 18.29 | 820 | 938 | 818 | 9.847 | 9.209 | įż | | .809
.802 | 683
587 | 1627
1407 | 685
588 | 893
847 | -15.54
-9.05 | -16.57
-9.646 | -15.50
-9.015 | 823
820 | 939
936 | 821
818 | 8,440
6,881 | 7,894
6,248 | 12 | | .444 | 984 | 2672 | 971 | 1160 | 1.882 | 2.021 | 1.857 | 1100 | 1268 | 2070 | 13.439 | 12,343 | 13 | | .436 | 974 | 2657
2523 | 960
916 | 1154
1115 | 1.775 | 1.896 | 1.741 | 1106 | 1264
1155 | 1066 | 15,459
15,576
12,343 | 12,287 | [3 | | .082 | 932
870 | 2355 | 857 | 1045 | 1.987
2.653 | 2.128
2.841 | 2.610 | 1007
941 | 1079 | 975.3
911.4 | 12,343 | 10,342 | 3 | | .069 | 772 | 2126 | 768 | 937 | 4.515 | 4.854 | 4.456 | 859 | 1074 | 905.6 | 9,912 | 1 9.905 | 13 | | .134 | 697
613 | 1919 | 687
603 | 878 | 7.12 | 7.643
31.35 | 7-010 | 958
1002 | 1107
1155 | 929.9
972.6 | 8,496
6.719 | 7,786 | 3 | | .245 | 684 | 1682
2427 | 886 | 843
963 | 29.20 | 2.401 | 28.76
2.313 | 1073 | 1167 | 1083.7 | 13.051 | 12,576 | 3 | | .246
.975 | 859 | 2467 | 847 | 948 | 2.08 | 2.165 | 2.075 | 1076 | 1166 | 1068 | 13.026 | 112.465 | 13 | | .692 | 803
675 | 2225
1892 | 810
877 | 872
753 | 5.11
11.44 | 3.244
11.88 | 3.124
11.48 | 944
814 | 1025
879 | 951.5
812 | 12,009 | 11,571
10,525 | 14 | | .310 | 503 | 1392 | 504 | 564 | -3.331 | -5.450 | -3.325 | 634 | 679 | 630.7 | 9,543 | ! 9.196 | 14 | | .331 | 503
778 | 1401
2943 | 510
765 | 567
758 | -3.47
2.67 | 2.863 | -3.490
2.643 | 835
1074 | 691
1232 | 641.3
1050 | 9,616 | 1 9,266 | 14 | | .380 | 775 | 2934 | 760 | 766 | 2.61 | 2.801 | 2.586 | 1071 | 1235 | 1052 | 15.459 | 12,403 | 14 | | .075
.825 | 752
650 | 2746 | 721
640 | 710
634 | 5.85 | 4.126 | 3.816 | 940 | 1078 | 921.2 | 15,459
12,345 | 11,409 | 14 | | .583 | 556 | 2109 | 550 | 525. | -14.26 | 6.980
-15.28 | -14.10 | 825
717 | 946
822 | 808.5
700.9 | 11,285
9,875 | 9,116 | 4 | | .497 | 503 | 1902 | 496 | 490 | -5.41 | -5.617 | -5.376 | 672 | 777 | 663.5 | 8,496 | 7,853 | 14 | | .487 | 656
667 | 5228 | 643 | 632 | 2.70 | 2.891 | 2.583 | 1115 | 1279 | 1022 | 13,401 | 11,976 | 5 | | .217 | 642 | 3115 | 624 | 595 | 5.512 | 3.552 | 5.175 | 1000 | 1151 | 920 | 12,366 | 111,057 | 5 | | .020 | 602
538 | 2912
2589 | 580
519 | 552
492 | 4-67 | 4.992 | 4.457 | 917 | 1048 | 836 | 11,264 | 10,062
8,824 | 5 | | .330 | 510 | | 313 | 452 | 15.15 | 14.05 | 12.56 | 878 | 1007 | 804 | 9,875 | 0,024 | 5 | | .536 | 470
556 | 3883 | 530 | 460 | | | 3,034 | 77.55 | 1316 | 1050 - | 10 : | 10 01 | 15 | | .337 | 548 | 3692 | 530
538 | 433 | 3.16
3.56 | 3.392
3.819 | 3.034
3.416 | 1054 | 1215 | 972.3 | 13,439
12,366 | 12,019 | 15 | | .541 | 564 | 3756 | 546 | 467 | 2.58 | 2.784 | 2.495 | 1136 | 1318 | 1057.9 | 13,465 | 112,063 | 15 | | .548
.421 | 554
554 | 3749
3645 | 551
527 | 459
460 | 2.83
5.01 | 2.832
3.239 | 2.537
2.697 | 1147
1087 | 1322
1257 | 1063
1007.5 | 13,425
12,300 | 12,035 | 5 | | .252 | 550 | 3686 | 529 | 436 | 3.14 | 5.394 | 5.054 | 1002 | 1166 | 935.4 | 12.218 | 10,951 | Į6 | | .110 | 513 | 3417 | 489 | 409 | 4.67 | 4.991 | 4.464 | 956 | 1097 | 875.8 | 111.467 | 110.229 | ľ | | .027
.991 | 487
450 | 3186
3016 | 461
436 | 388
330 | 7.05
13.6 | 7.594
14.73 | 6.797
13.15 | 906
888 | 1051 | 841.7 | 9,172 | 9,579 | 6 | | .927 | 431
520 | 2856 | 616 | 310 | | -67.88 | -51.75 | 867 | 1000 | 801.7 | 7.384 | 6.611 | 16 | | .400 | 520
509 | 3840 | 488 | 383 | 5.05 | 3.281 | 3.030 | 1075 | 1245 | 1061.4 | 12,932 | 11,943 | 6 | | .262 | 497 | 3733 | 470 | 365 | 3.825 | 4.085 | 3.769 | 1029 | 1176 | 1001 | 12.416 | 111.466 | ŀē | | .121 | 472
451 | 3532
3223 | 452
412 | 349
317 | 4.970 | 5.305 | 4.905 | 967
885 | 1100 | 940.7
859 | 11,631 | 10,956
10,393 | 16 | | .737 | 396 | 2990 | 280 | 361 | 7.695
24.75 | 8.214
26.50 | 7,589
24.50 | -765 | 900 | 769 | 9,974 | 9,219 | 17 | | .627 | 417 | 393I | 387 | 328 | 2.726 | 2.902 | 2.595 | 1205 | 1362 | 1092 | 13,314 | 111,921 | 17 | | .536
.346 | 451
422 | 4405
5951 | 427
387 | 314
312 | 2.987
5.640 | 3.212
3.879 | 2.874 | 1136 | 1315
1218 | 1050.5 | 12,932
12,297 | 11,557
10,993 | 17 | | | 455 | | 1 30/ | | , 3⊷04:∪ | 3.0/3 | 3.5/4 | | | , s:3.4 | التحرجما | 1-0,000 | 1.5 | | .253
.167 | 424
591 | 3976 | 387
355 | 303 | 5-720 | 3.956
6.852 | 3.474
5.535 | 1032 | 1168
1125 | 934.5 | 11,704 | 10,468 | 17 | | • | -WACA | _ | | | | | | | | | | TABL | # T | PERFOR | MANCE K | T VARIO | US ENG | INE-OPER | ATING AND | |--|---|-----------------------|---|---|--
--|--|--|--|---|--|---------------------------------|--|---|--|---|--|---|--| | Run | Nozzle
eres
(sq in.) | Alti-
tude
(ft) | Rem
pres-
sure
ratio
P ₁
P ₀ | Flight
Mach
number
Mo | Tunnel static pressure Po (Ib (sq It abs.) | Reynolds number index or g-ver | Engine
apeed
H
(rpm) | Equiva-
lent
ambient
air
temper-
ature
t
(OR) | Engine-
inlet
indi-
cated
temper-
ature
Ti
(OR) | Jet
Alti-
tude
Pj | Cor- | (1b) Ad- justed Final Sadj | Engine
total-
pres-
sure
ratio
Ps
Pg | | thrust
Cor-
rected
Fn
By | (1b) Ad- Justed Fn 5adj | Air
Alti-
tude
Va | Flow, (Cor- rected Va-/07 07 | lb/sec) justed Wa 40adj Badj | | | · | | | | | (e) Mie | cellane | ous poir | its, exi | ust-no | zzle ar | 04 give | <u> </u> | _ | · | ! | | | ' | | 1
2
3 | 158.5
161.5
154.3 | 25,000 | 1.069
1.065
1.060 | 0.299
.286
.278 | 780
787
765 | 0.4658
.4695
.4728 | 10,775
10,600
8,938 | 447
446
442 | 454
453
449 | 1226
1082
829 | 3125
2672
2119 | 829 | 1.943
1.783
1.650 | 1012
852
670 | 2580
2184
1715 | 1018
850
870 | 22.17
21.77
17.93 | 52.92
51.66
42.62 | 22.75
22.10
18.18 | | 4
5
6
7
8 | 157.5
154.9
154.3
154.3
157.5 | 40,000 | 1.545
1.520
1.537
1.548
1.220
1.216 | 0.803
.786
.814
.806
.525
.522
.532 | 396
396
391
398
391
393 | .2698 | 12,125
11,525
11,188
10,625
11,900
11,775 | 400
402
401
399
428
427 | 449
450
453
461
448
448 | 1504
1236
1159
865
840
881 | 4561
4595
4060
3015
4214
5942 | | 2.208
2.118
2.098
1.707
2.222
2.112 | 862
619
740
500
709
851 | 3015
2912
2692
1745
3178
2913 | 742
495
711
849 | 18.08
17.35
16.87
14.88
13.99
14.01 | 58.89
57.57
55.27
48.30
58.34
58.37 | 18.04
17.57
17.08
14.83
14.61
14.58 | | 10
11
12
15 | 157.6
156.5
159.2
159.1 | 47,000 | 1.224
1.220
1.218
1.221
1.225 | .525
.527
.531
0.529 | 392
367
394
594
271 | .2700
.2664
.2718
.2700
0.1856 | 11,725
11,663
10,938
10,613
11,100 | 426
428
425
428 | 449
448
448
451
451 | 915
699
735
594
499 | 4076
4073
3267
2635
5219 | 915
911
781
891
517 | 2.178
2.186
1.914
1.688 | 680
673
518
400
349 | 3029
3049
2303
1774
2251 | 582 | 14.07
13.63
13.10
11.59 | 58.36
57.59
54.16
47.98
54.18 | 14.65
14.40
15.58
12.04 | | 15
16
17
18
19 | 175.1
179.2
163.9
159.8 | 95,000 | | 0.775 | 268
271
275
269
195 | .1842
.1888
.1902
.1855
0.1678 | 11,025
10,475
9,688
9,313
11,850 | 425
426
426
427
896 | 446
450
450
461
445 | 467
346
266
255
536 | 3078
2225
1812
1650
3911 | 490
359
292
266
525 | 1.775
1.517
1.407
1.355 | 323
213
169
151
338 | 2129
1370
1071
977
2430 | 339
221
173
158
528 | 8.93
7.88
6.95
5.19
8.65 | 54.70
47.50
41.00
37.38
58.38 | 8.74
8.53
7.38
6.74 | | 20
21
22
23
24 | 165.3
176.2
166.8
160.6
197.6 | | 1.556
1.589
1.559
1.582
1.256 | .808
.852
.815
.828
.535 | 196
192
195
194
191 | .1712
.1722
.1729
.1724
.1315 | 11,250
10,750
19,575
9,500
12,825 | 398
395
395
598
428 | 448
446
446
451
450 | 535
447
565
265
361 | 3761
3132
2666
1984
3293 | 358
281
361 | 1.674
1.595
1.508
1.526
1.784 | 327
245
188
129
247 | 2299
1717
1522
698
2253 | 319
244
184
127
247 | 8.44
6.02
7.19
6.18
6.78 | 55.31
52.33
46.91
40.16
57.80 | 8.00
7.0E
8.1E
7.0E | | 25
26
27
28
29
30
31 | 202.6
185.3
202.8
185.3
202.6
185.3
202.6 | Ì | 1.258
1.256
1.252
1.253
1.242
1.258
1.257 | .555 | 780
180
180
180
181
181 | .1345
.1319
.1312
.1326
.1333
.1352 | 12,525
12,438
12,125
12,063
11,563
11,500 | 422
427
426
425
424
421 | 448
450
449
450
447 | 355
438
327
415
307
369
274 | 3183
3978
2995
3763
2788
3308
2499 | 329
417
309 | 1.669
1.991
1.645
1.925
1.584
1.818 | 229
320
210
296
192
248
163 | 2053
2906
1924
2677
1744
2224
1467 | 230
320
911
297
193
949
184 | 7.15
6.95
6.93
6.83
6.68
6.68 | 59.62
58.90
59.18
57.58
58.43
57.23
55.31 | 7.44
7.24
7.25
7.14
6.97
7.14
6.81 | | SIMULATE | D- P1.1 0 | нт сом | TTOME WITH | NIXER VARES | DESTALLE | 20 - Cox | cluded | | | | - A | ACA. | - | |---|---------------------|--------------|----------------------------------|---|----------------|----------|---------------------|---|--------------------------|-------|--|---------------------------------------|-------| | Engine
total-
temper-
ature
ratio | Alti-
tude
Vr | rected
Wf | (1b/hr) Ad- justed Vf Sadj VSadj | Turbine-
cutiet
total
pressure | Alti-
tude | 1b/h | Ad-
justed
Wg | Exhau
tempo
Alti-
tude
T ₆ | reture
Cor-
rected | (°R) | Cor-
rected
engine
speed
H | Ad-
justed
engine
speed
H | | | 72 | | | <u> </u> | (e) Misc | Y _n | | Pn Wadi | nozzle | eres s | iven. | (rp=) | (rp=) | Ц | | - 400 | | | 1076 | | | _ | | 1578 | 1800 | 1518 | 12 500 | 10.568 | Τı | | 3.488 | 1293 | 3520
3086 | 1276 | 1613 | 1.278 | 1.426 | 1.253 | 1425 | 1654 | 1374 | | 10,406 | | | 3.316 | 1034 | 2829 | 1016 | 1506 | | 1.652 | 1.516 | 1489 | 1721 | 1444 | 10.583 | | | | 3.785 | 12246 | 4677 | 1016 | 1338 | 1.446 | 1.551 | 1.455 | 1707 | 1543 | 1677 | | 12.016 | | | 3.827 | 1206 | 4594 | 1130 | 1320 | 1.470 | 1.578 | 1.455 | 1730 | 1965 | 1691 | | 11,395 | | | 3.678 | 1112 | 4155 | 1104 | 1267 | | 1.507 | 1.488 | 1670 | 1984 | 1636 | | 11,075 | | | 3.488 | 683 | 3301 | 867 | 1036 | | 1.694 | 1.752 | 1573 | 1909 | 1549 | | 10,545 | | | 3.869 | 1017 | 4900 | 990 | 1045 | 1.431 | 1.642 | 1.378 | 1746 | 8018 | 1612 | | 11,430 | | | 3.636 | 925 | 4445 | 8.85 | 988 | 1.421 | 1.525 | 1.363 | 1636 | 1886 | 1507 | 12,646 | 11,297 | 1.3 1 | | 3.751 | 970 | 4642 | 932 | 1035 | 1.425 | 1.532 | 1-571 | 1688 | 1846 | 1558 | | 11,262 | | | 3.780 | 960 | 4671
5825 | 934 | 1021 | 1.425 | 1.532 | 1.570 | 1701 | 1961
1749 | 1570 | | 11,106 | | | 3.301 | 717 | 3407 | | 905 | 1.793 | | 1.718 | 1492 | 1711 | 1570 | | 10.163 | | | 3.285 | 622 | 2296 | 818 | 599 | 1.781 | 1.90a | 1.708 | 1485 | 1/03 | 1384 | | 10.836 | | | 3.134 | 597 | 4232 | 605 | 569 | | 1.988 | 1.777 | 1404 | 1626 | 1299 | | 10.502 | | | 2.821 | 555 | 3821 | 556 | 499 | | 2.789 | 2.496 | 1275 | 1462 | 1171 | | 10.037 | | | 2.907 | 527 | 3586 | 53.7 | 470 | | 5.349 | 2.994 | 1306 | 1506 | 1208 | 10,405 | | | | 2.976 | 514 | 3559 | 57.5 | 443 | | 5.642 | 3.265 | 1545
1495 | 1543 | 1238 | 9,974 | 8,935 | 18 | | 3.367 | 598 | 4714 | 584 | 545 | 1.796 | I.940 | 3.265
1.790 | 1495 | 1748 | 1484 | | 11,805 | | | 3.361 | 598 | 4513 | 579 | 564 | | 1.963 | 1.817 | 1525 | 1755 | 1502 | | 11,166 | | | 2.878 | 540 | 4064 | 536 | 481 | | 2.367 | 2.200 | 1294 | 1492 | 1288 | | 10,722 | | | 2.679 | 526 | 4000 | 516 | 454 | | 3.027 | 2.803 | 1306 | 1517 | 1302 | 11,174 | 10,348 | 22 | | 2.926 | 486 | 3627 | 476 | 400 | | 4.039 | 3.744 | 1211 | 1389 | 1196 | 10,175 | | | | 3.389 | 501
482 | 4898 | 487
455 | 4.16 | | 2.174 | 2.031 | 1532
1436 | 1757 | 1540 | | 12,097 | | | 3.198 | 550 | 5349 | 52B | 394
464 | | 1.841 | 1.650 | 1696 | 1948 | 1563 | | 11,933 | | | 3.061 | 476 | 4881 | 459 | 380 | | 2.433 | 2.176 | 1376 | 1584 | 1269 | 13.010 | 11,646 | 27 | | 3.557 | 527 | 5109 | 510 | 450 | | 1.909 | 1.713 | 1604 | 1846 | 1494 | | 11.600 | | | 2.873 | 470 | 4586 | 465 | 369 | | 2.630 | 2,359 | 1290 | 1491 | 1196 | 12,430 | 11,133 | 29 | | 3.272 | 502 | 4842 | 487 | 429 | 2.025 | 2.177 | 1.956 | 1466 | 1698 | 136\$ | 12,374 | 11,111 | 30 | | 2.755 | 460 | 4515 | 459 | 346 | 2.825 | 5.037 | 2.718 | 1237 | 2450 | 1146 | 12,027 | 10,772 | 31 | Figure 1. - Installation of XJ34-WE-32 in altitude wind tunnel. | 1 | Total pressure | Static pressure | Thermo- | |-------------|----------------|-----------------|-------------| | Station | tubes | tubes | couples | | 1 | 17 | 5 | 9 | | 2 | 16 | 10 | 8 | | 3 | 15 | 3 | 3 | | 4 | 5 | pa | | | 5 | 21 | 6 | 36 | | 7 | 30 | 20 | 30 | | 8 | 26 | 11 | 16 | | | | L | | Figure 2. - Cross section of engine showing location of instrumentation. Figure 3. - Effect of altitude on variation of corrected jet thrust with corrected engine
speed at flight Mach number of 0.528. Figure 4. - Effect of altitude on variation of corrected net thrust with corrected engine speed at flight Mach number of 0.528. NACA RM E51L12 Figure 5. - Effect of altitude on variation of corrected air flow with corrected engine speed at flight Mach number of 0.528. Figure 6. - Effect of altitude on variation of corrected fuel flow with corrected engine speed at flight Mach number of 0.528. Figure 7. - Effect of altitude on variation of corrected specific fuel consumption with corrected engine speed at flight Mach number of 0.528. 247(- -- **.** • . . . - . (c) Nozzle area, 192 square inches. Figure 8. - Effect of altitude on variation of corrected exhaust-gas total temperature with corrected engine speed at flight Mach number of 0.528. ⁽d) Nozzle area, 274 square inches. 33 Figure 9. - Effect of flight Mach number on variation of corrected air flow with corrected engine speed at altitude of 25,000 feet. Figure 10. - Variation of engine total-pressure ratio with Reynolds number index for various angine total-temperature ratios. (b) Corrected engine speed, 11,500 rpm. Figure 11. - Variation of corrected air flow with Reynolds number index for various engine temperature ratios. Pigure 12. - Variation of corrected fuel flow with Reynolds number index for various engine total-temperature ratios. Figure 13. - Chart for evaluating Reynolds number index at altitude for flight Mach numbers varying from 0 to 1.6. Figure 14. - Variation of specific fuel consumption and net thrust with turbine-outlet temperature for four nozzle areas at flight Mach number of 0.528. (d) Variation of specific fuel consumption at constant exhaust-nozzle area. Figure 15. - Variation of engine variables with altitude at flight Mach number of 0.528. Figure 16. - Variation of engine variables with flight Mach number at altitude of 25,000 feet. SECURITY INFORMATION 3 1176 01434 9816 • • -